Machine learning of atomic-scale properties is revolutionizing molecular modeling, making it possible to evaluate inter-atomic potentials with first-principles accuracy, at a fraction of the costs. The accuracy, speed, and reliability of machine learning potentials, however, depend strongly on the way atomic configurations are represented, i.e., the choice of descriptors used as input for the machine learning method. The raw Cartesian coordinates are typically transformed in “fingerprints,” or “symmetry functions,” that are designed to encode, in addition to the structure, important properties of the potential energy surface like its invariances with respect to rotation, translation, and permutation of like atoms. Here we discuss automatic protocols to select a number of fingerprints out of a large pool of candidates, based on the correlations that are intrinsic to the training data. This procedure can greatly simplify the construction of neural network potentials that strike the best balance between accuracy and computational efficiency and has the potential to accelerate by orders of magnitude the evaluation of Gaussian approximation potentials based on the smooth overlap of atomic positions kernel. We present applications to the construction of neural network potentials for water and for an Al–Mg–Si alloy and to the prediction of the formation energies of small organic molecules using Gaussian process regression.

1.
B.
Rost
and
C.
Sander
,
Proteins: Struct., Funct., Bioinf.
19
,
55
(
1994
).
2.
P. J.
Ballester
and
J. B.
Mitchell
,
Bioinformatics
26
,
1169
(
2010
).
3.
J.
Cheng
and
P.
Baldi
,
Bioinformatics
22
,
1456
(
2006
).
4.
P.
Gasparotto
,
R. H.
Meißner
, and
M.
Ceriotti
,
J. Chem. Theory Comput.
14
,
486
(
2018
).
5.
M.
Haranczyk
and
J. A.
Sethian
,
J. Chem. Theory Comput.
6
,
3472
(
2010
).
6.
D. A.
Carr
,
M.
Lach-hab
,
S.
Yang
,
I. I.
Vaisman
, and
E.
Blaisten-Barojas
,
Microporous Mesoporous Mater.
117
,
339
(
2009
).
7.
T. D.
Huan
,
A.
Mannodi-Kanakkithodi
, and
R.
Ramprasad
,
Phys. Rev. B
92
,
014106
(
2015
).
8.
M.
Rupp
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
Von Lilienfeld
,
Phys. Rev. Lett.
108
,
058301
(
2012
).
9.
F. A.
Faber
,
A.
Lindmaa
,
O. A.
von Lilienfeld
, and
R.
Armiento
,
Phys. Rev. Lett.
117
,
135502
(
2016
).
10.
J.
Behler
,
J. Chem. Phys.
145
,
170901
(
2016
).
11.
S.
De
,
F.
Musil
,
T.
Ingram
,
C.
Baldauf
, and
M.
Ceriotti
,
J. Cheminf.
9
,
6
(
2017
).
12.
T. D.
Sparks
,
M. W.
Gaultois
,
A.
Oliynyk
,
J.
Brgoch
, and
B.
Meredig
,
Scr. Mater.
111
,
10
(
2016
).
13.
J.
Behler
and
M.
Parrinello
,
Phys. Rev. Lett.
98
,
146401
(
2007
).
14.
A. P.
Bartók
,
R.
Kondor
, and
G.
Csányi
,
Phys. Rev. B
87
,
184115
(
2013
).
15.
A.
Glielmo
,
P.
Sollich
, and
A.
De Vita
,
Phys. Rev. B
95
,
214302
(
2017
).
16.
A.
Grisafi
,
D. M.
Wilkins
,
G.
Csányi
, and
M.
Ceriotti
,
Phys. Rev. Lett.
120
,
036002
(
2018
).
17.
L.
Zhu
,
M.
Amsler
,
T.
Fuhrer
,
B.
Schaefer
,
S.
Faraji
,
S.
Rostami
,
S. A.
Ghasemi
,
A.
Sadeghi
,
M.
Grauzinyte
,
C.
Wolverton
, and
S.
Goedecker
,
J. Chem. Phys.
144
,
034203
(
2016
).
18.
B.
Huang
and
O. A.
von Lilienfeld
,
J. Chem. Phys.
145
,
161102
(
2016
).
19.
F. A.
Faber
,
L.
Hutchison
,
B.
Huang
,
J.
Gilmer
,
S. S.
Schoenholz
,
G. E.
Dahl
,
O.
Vinyals
,
S.
Kearnes
,
P. F.
Riley
, and
O. A.
von Lilienfeld
,
J. Chem. Theory Comput.
13
,
5255
(
2017
).
20.
J.
Behler
,
J. Chem. Phys.
134
,
074106
(
2011
).
21.
R. Z.
Khaliullin
,
H.
Eshet
,
T. D.
Kühne
,
J.
Behler
, and
M.
Parrinello
,
Phys. Rev. B
81
,
100103
(
2010
).
22.
G. C.
Sosso
,
G.
Miceli
,
S.
Caravati
,
J.
Behler
, and
M.
Bernasconi
,
Phys. Rev. B
85
,
174103
(
2012
).
23.
H.
Eshet
,
R. Z.
Khaliullin
,
T. D.
Kühne
,
J.
Behler
, and
M.
Parrinello
,
Phys. Rev. Lett.
108
,
115701
(
2012
).
24.
N.
Artrith
and
J.
Behler
,
Phys. Rev. B
85
,
045439
(
2012
).
25.
V.
Kapil
,
J.
Behler
, and
M.
Ceriotti
,
J. Chem. Phys.
145
,
234103
(
2016
).
26.
B.
Cheng
,
J.
Behler
, and
M.
Ceriotti
,
J. Phys. Chem. Lett.
7
,
2210
(
2016
).
27.
M.
Gastegger
,
J.
Behler
, and
P.
Marquetand
,
Chem. Sci.
8
,
6924
(
2017
).
28.
J.
Behler
,
Phys. Chem. Chem. Phys.
13
,
17930
(
2011
).
29.
K. V.
Jovan Jose
,
N.
Artrith
, and
J.
Behler
,
J. Chem. Phys.
136
,
194111
(
2012
).
30.
J.
Behler
,
Angew. Chem., Int. Ed.
56
,
12828
(
2017
).
31.
J.
Behler
,
Int. J. Quantum Chem.
115
,
1032
(
2015
).
32.
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
,
Phys. Rev. Lett.
104
,
136403
(
2010
).
33.
V. L.
Deringer
and
G.
Csányi
,
Phys. Rev. B
95
,
094203
(
2017
).
34.
S.
De
,
A. P.
Bartók
,
G.
Csányi
, and
M.
Ceriotti
,
Phys. Chem. Chem. Phys.
18
,
13754
(
2016
).
35.
A. P.
Bartók
,
M. J.
Gillan
,
F. R.
Manby
, and
G.
Csányi
,
Phys. Rev. B
88
,
054104
(
2013
).
36.
W. J.
Szlachta
,
A. P.
Bartók
, and
G.
Csányi
,
Phys. Rev. B
90
,
104108
(
2014
).
37.
A. P.
Bartok
,
S.
De
,
C.
Poelking
,
N.
Bernstein
,
J.
Kermode
,
G.
Csanyi
, and
M.
Ceriotti
,
Sci. Adv.
3
,
e1701816
(
2017
).
38.
F.
Musil
,
S.
De
,
J.
Yang
,
J. E.
Campbell
,
G. M.
Day
, and
M.
Ceriotti
,
Chem. Sci.
9
,
1289
(
2018
).
39.
M.
Gastegger
,
L.
Schwiedrzik
,
M.
Bittermann
,
F.
Berzsenyi
, and
P.
Marquetand
,
J. Chem. Phys.
148
,
241709
(
2018
).
40.
N. J.
Browning
,
R.
Ramakrishnan
,
O. A.
von Lilienfeld
, and
U.
Roethlisberger
,
J. Phys. Chem. Lett.
8
,
1351
(
2017
).
41.
J. S.
Smith
,
O.
Isayev
, and
A. E.
Roitberg
,
Chem. Sci.
8
,
3192
(
2017
).
42.
M. W.
Mahoney
and
P.
Drineas
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
697
(
2009
).
43.
A. P.
Bartók
and
G.
Csányi
,
Int. J. Quantum Chem.
115
,
1051
(
2015
).
44.
M.
Ceriotti
,
G. A.
Tribello
, and
M.
Parrinello
,
J. Chem. Theory Comput.
9
,
1521
(
2013
).
45.
T.
Morawietz
,
A.
Singraber
,
C.
Dellago
, and
J.
Behler
,
Proc. Natl. Acad. Sci. U. S. A.
113
,
8368
(
2016
).
46.
M.
Hellström
and
J.
Behler
,
J. Phys. Chem. Lett.
7
,
3302
(
2016
).
47.
S.
Kondati Natarajan
,
T.
Morawietz
, and
J.
Behler
,
Phys. Chem. Chem. Phys.
17
,
8356
(
2015
).
48.
V.
Quaranta
,
M.
Hellström
, and
J.
Behler
,
J. Phys. Chem. Lett.
8
,
1476
(
2017
).
49.
J.
Behler
,
RuNNer–A Neural Network Code for High-Dimensional Potential-Energy Surfaces
(
Theoretische Chemie, Institut für Physikalische Chemie, Georg-August-Universität Göttingen
,
Germany
,
2018
).
50.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
51.
R.
Kobayashi
,
D.
Giofré
,
T.
Junge
,
M.
Ceriotti
, and
W. A.
Curtin
,
Phys. Rev. Mater.
1
,
053604
(
2017
).
52.
D.
Giofré
,
T.
Junge
,
W. A.
Curtin
, and
M.
Ceriotti
,
Acta Mater.
140
,
240
(
2017
).
53.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
111
,
7010
(
1999
).
54.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
55.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A. D.
Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
,
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
56.
M.
Mantina
,
Y.
Wang
,
L.
Chen
,
Z.
Liu
, and
C.
Wolverton
,
Acta Mater.
57
,
4102
(
2009
).
57.
G.
Montavon
,
M.
Rupp
,
V.
Gobre
,
A.
Vazquez-Mayagoitia
,
K.
Hansen
,
A.
Tkatchenko
,
K. R.
Müller
, and
O.
Anatole Von Lilienfeld
,
New J. Phys.
15
,
095003
(
2013
).

Supplementary Material

You do not currently have access to this content.