We use a combination of machine learning techniques and high-throughput density-functional theory calculations to explore ternary compounds with the AB2C2 composition. We chose the two most common intermetallic prototypes for this composition, namely, the tI10-CeAl2Ga2 and the tP10-FeMo2B2 structures. Our results suggest that there may be ∼10 times more stable compounds in these phases than previously known. These are mostly metallic and non-magnetic. While the use of machine learning reduces the overall calculation cost by around 75%, some limitations of its predictive power still exist, in particular, for compounds involving the second-row of the periodic table or magnetic elements.

1.
D.
Morgan
,
G.
Ceder
, and
S.
Curtarolo
, “
High-throughput and data mining with ab initio methods
,”
Meas. Sci. Technol.
16
,
296
(
2005
).
2.
J.
Carrete
,
W.
Li
,
N.
Mingo
,
S.
Wang
, and
S.
Curtarolo
, “
Finding unprecedentedly low-thermal-conductivity half-Heusler semicon ductors via high-throughput materials modeling
,”
Phys. Rev. X
4
,
011019
(
2014
).
3.
F.
Yan
,
X.
Zhang
,
G.
Yu Yonggang
,
L.
Yu
,
A.
Nagaraja
,
T. O.
Mason
, and
A.
Zunger
, “
Design and discovery of a novel half-Heusler transparent hole conductor made of all-metallic heavy elements
,”
Nat. Commun.
6
,
7308
(
2015
).
4.
J.
Schmidt
,
J.
Shi
,
P.
Borlido
,
L.
Chen
,
S.
Botti
, and
M. A. L.
Marques
, “
Predicting the thermodynamic stability of solids combining density functional theory and machine learning
,”
Chem. Mater.
29
,
5090
5103
(
2017
).
5.
S.
Curtarolo
,
W.
Setyawan
,
S.
Wang
,
J.
Xue
,
K.
Yang
,
R. H.
Taylor
,
L. J.
Nelson
,
G. L. W.
Hart
,
S.
Sanvito
,
M.
Buongiorno-Nardelli
,
N.
Mingo
, and
O.
Levy
, “
AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations
,”
Comput. Mater. Sci.
58
,
227
235
(
2012
).
6.
A.
Jain
,
S.
Ping Ong
,
G.
Hautier
,
W.
Chen
,
W.
Davidson Richards
,
S.
Dacek
,
S.
Cholia
,
D.
Gunter
,
D.
Skinner
,
G.
Ceder
, and
K. A.
Persson
, “
The materials project: A materials genome approach to accelerating materials innovation
,”
APL Mater.
1
,
011002
(
2013
).
7.
J. E.
Saal
,
S.
Kirklin
,
M.
Aykol
,
B.
Meredig
, and
C.
Wolverton
, “
Materials design and discovery with high-throughput density functional theory: The open quantum materials database (OQMD)
,”
JOM
65
,
1501
1509
(
2013
).
8.
J.
Dshemuchadse
and
W.
Steurer
, “
More statistics on intermetallic compounds–ternary phases
,”
Acta Crystallogr., Sect. A: Found. Adv.
71
,
335
345
(
2015
).
9.
S.
Judith John
and
A. N.
Bloch
, “
Quantum-defect electronegativity scale for nontransition elements
,”
Phys. Rev. Lett.
33
,
1095
(
1974
).
10.
A.
Zunger
, “
Systematization of the stable crystal structure of all AB-type binary compounds: A pseudopotential orbital-radii approach
,”
Phys. Rev. B
22
,
5839
(
1980
).
11.
J. R.
Chelikowsky
, “
Diagrammatic separation scheme for transition-metal binary compounds
,”
Phys. Rev. B
26
,
3433
(
1982
).
12.
Y.
Saad
,
D.
Gao
,
T.
Ngo
,
S.
Bobbitt
,
J. R.
Chelikowsky
, and
W.
Andreoni
, “
Data mining for materials: Computational experiments with AB compounds
,”
Phys. Rev. B
85
,
104104
(
2012
).
13.
F. A.
Faber
,
A.
Lindmaa
,
O.
Anatole von Lilienfeld
, and
R.
Armiento
, “
Machine learning energies of 2 million elpasolite (ABC2D6) crystals
,”
Phys. Rev. Lett.
117
,
135502
(
2016
).
14.
L. M.
Ghiringhelli
,
J.
Vybiral
,
S. V.
Levchenko
,
C.
Draxl
, and
M.
Scheffler
, “
Big data of materials science: Critical role of the descriptor
,”
Phys. Rev. Lett.
114
,
105503
(
2015
).
15.
L. M.
Ghiringhelli
,
J.
Vybiral
,
E.
Ahmetcik
,
R.
Ouyang
,
S. V.
Levchenko
,
C.
Draxl
, and
M.
Scheffler
, “
Learning physical descriptors for materials science by compressed sensing
,”
New J. Phys.
19
,
023017
(
2017
).
16.
M.
Rupp
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O.
Anatole von Lilienfeld
, “
Fast and accurate modeling of molecular atomization energies with machine learning
,”
Phys. Rev. Lett.
108
,
058301
(
2012
).
17.
T.
Doan Huan
,
A.
Mannodi-Kanakkithodi
, and
R.
Ramprasad
, “
Accelerated materials property predictions and design using motif-based fingerprints
,”
Phys. Rev. B
92
,
014106
(
2015
).
18.
A.
Mannodi-Kanakkithodi
,
G.
Pilania
,
T.
Doan Huan
,
T.
Lookman
, and
R.
Ramprasad
, “
Machine learning strategy for accelerated design of polymer dielectrics
,”
Sci. Rep.
6
,
20952
(
2016
).
19.
G.
Pilania
,
C.
Wang
,
X.
Jiang
,
S.
Rajasekaran
, and
R.
Ramprasad
, “
Accelerating materials property predictions using machine learning
,”
Sci. Rep.
3
,
2810
(
2013
).
20.
G.
Pilania
,
A.
Mannodi-Kanakkithodi
,
B. P.
Uberuaga
,
R.
Ramprasad
,
J. E.
Gubernatis
, and
T.
Lookman
, “
Machine learning bandgaps of double perovskites
,”
Sci. Rep.
6
,
19375
(
2016
).
21.
J.
Lee
,
A.
Seko
,
K.
Shitara
,
K.
Nakayama
, and
I.
Tanaka
, “
Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques
,”
Phys. Rev. B
93
,
115104
(
2016
).
22.
P.
Dey
,
J.
Bible
,
S.
Datta
,
S.
Broderick
,
J.
Jasinski
,
M.
Sunkara
,
M.
Menon
, and
K.
Rajan
, “
Informatics-aided bandgap engineering for solar materials
,”
Comput. Mater. Sci.
83
,
185
195
(
2014
).
23.
B.
Meredig
,
A.
Agrawal
,
S.
Kirklin
,
J. E.
Saal
,
J. W.
Doak
,
A.
Thompson
,
K.
Zhang
,
A.
Choudhary
, and
C.
Wolverton
, “
Combinatorial screening for new materials in unconstrained composition space with machine learning
,”
Phys. Rev. B
89
,
094104
(
2014
).
24.
A. O.
Oliynyk
,
E.
Antono
,
T. D.
Sparks
,
L.
Ghadbeigi
,
M. W.
Gaultois
,
B.
Meredig
, and
A.
Mar
, “
High-throughput machine-learning-driven synthesis of full-Heusler compounds
,”
Chem. Mater.
28
,
7324
7331
(
2016
).
25.
E. D.
Cubuk
,
S. S.
Schoenholz
,
J. M.
Rieser
,
B. D.
Malone
,
J.
Rottler
,
D. J.
Durian
,
E.
Kaxiras
, and
A. J.
Liu
, “
Identifying structural flow defects in disordered solids using machine-learning methods
,”
Phys. Rev. Lett.
114
,
108001
(
2015
).
26.
C.
Dietz
,
T.
Kretz
, and
M. H.
Thoma
, “
Machine-learning approach for local classification of crystalline structures in multiphase systems
,”
Phys. Rev. E
96
,
011301
(
2017
).
27.
P.
Raccuglia
,
K. C.
Elbert
,
P. D. F.
Adler
,
C.
Falk
,
M. B.
Wenny
,
A.
Mollo
,
M.
Zeller
,
S. A.
Friedler
,
J.
Schrier
, and
A. J.
Norquist
, “
Machine-learning-assisted materials discovery using failed experiments
,”
Nature
533
,
73
76
(
2016
).
28.
A. O.
Oliynyk
and
A.
Mar
, “
Discovery of intermetallic compounds from traditional to machine-learning approaches
,”
Acc. Chem. Res.
51
,
59
68
(
2018
).
29.
S.
Marsland
,
Machine Learning: An Algorithmic Perspective
(
CRC Press
,
2015
).
30.
P.
Villars
and
K.
Cenzual
, Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (on DVD), Release 2017/18, ASM International, Materials Park, Ohio, USA.
31.
W.
Steurer
and
J.
Dshemuchadse
,
Intermetallics: Structures, Properties, and Statistics
(
Oxford University Press
,
2016
), Vol. 26.
32.

We decided to write the composition as FeMo2B2 and not as the more common Mo2FeB2 in order to have a common AB2C2 notation for both tI10 and tP10 structures.

33.
M.
Lukachuk
and
R.
Pöttgen
, “
Intermetallic compounds with ordered U3Si2 or Zr3Al2 type structure–crystal chemistry, chemical bonding and physical properties
,”
Z. Kristallogr. - Cryst. Mater.
218
,
767
787
(
2003
).
34.
B.
Sriram Shastry
and
B.
Sutherland
, “
Exact ground state of a quantum mechanical antiferromagnet
,”
Physica B+C
108
,
1069
1070
(
1981
).
35.
L.
Havela
,
S.
Mašková
,
P.
Svoboda
,
K.
Miliyanchuk
,
A.
Kolomiets
, and
A. V.
Andreev
, “
Structure and magnetism of R2T2X compounds and their hydrides; comparison of lanthanides and actinides
,”
Chem. Met. Alloys
6
,
170
176
(
2013
).
36.
H.
Glawe
,
A.
Sanna
,
E. K. U.
Gross
, and
M. A. L.
Marques
, “
The optimal one dimensional periodic table: A modified pettifor chemical scale from data mining
,”
New J. Phys.
18
,
093011
(
2016
).
37.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996
).
38.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
39.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
(
1994
).
40.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
41.
V. I.
Anisimov
,
J.
Zaanen
, and
O. K.
Andersen
, “
Band theory and Mott insulators: Hubbard U instead of Stoner I
,”
Phys. Rev. B
44
,
943
(
1991
).
42.
S.
Ping Ong
,
W.
Davidson Richards
,
A.
Jain
,
G.
Hautier
,
M.
Kocher
,
S.
Cholia
,
D.
Gunter
,
V. L.
Chevrier
,
K. A.
Persson
, and
G.
Ceder
, “
Python materials genomics (pymatgen): A robust, open-source python library for materials analysis
,”
Comput. Mater. Sci.
68
,
314
319
(
2013
).
43.
G.
Bergerhoff
and
I. D.
Brown
, “
Inorganic crystal structure database
,” in
Crystallographic Databases
, edited by
F. H.
Allen
(
International Union of Crystallography
,
Chester
,
1987
).
44.
A.
Belsky
,
M.
Hellenbrandt
,
V.
Lynn Karen
, and
P.
Luksch
, “
New developments in the inorganic crystal structure database (ICSD): Accessibility in support of materials research and design
,”
Acta Crystallogr., Sect. B: Struct. Sci.
58
,
364
369
(
2002
).
45.
P.
Geurts
,
D.
Ernst
, and
L.
Wehenkel
, “
Extremely randomized trees
,”
Mach. Learn.
63
,
3
42
(
2006
).
46.
F.
Pedregosa
,
G.
Varoquaux
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
P.
Prettenhofer
,
R.
Weiss
,
V.
Dubourg
,
J.
Vanderplas
,
A.
Passos
,
D.
Cournapeau
,
M.
Brucher
,
M.
Perrot
, and
E.
Duchesnay
, “
Scikit-learn: Machine learning in Python
,”
J. Mach. Learn. Res.
12
,
2825
2830
(
2011
).
47.
The NOMAD repository is available at http://nomad-repository.eu/.
You do not currently have access to this content.