Unraveling the atomistic details of solid/liquid interfaces, e.g., by means of vibrational spectroscopy, is of vital importance in numerous applications, from electrochemistry to heterogeneous catalysis. Water-oxide interfaces represent a formidable challenge because a large variety of molecular and dissociated water species are present at the surface. Here, we present a comprehensive theoretical analysis of the anharmonic OH stretching vibrations at the water/ZnO(101¯0) interface as a prototypical case. Molecular dynamics simulations employing a reactive high-dimensional neural network potential based on density functional theory calculations have been used to sample the interfacial structures. In the second step, one-dimensional potential energy curves have been generated for a large number of configurations to solve the nuclear Schrödinger equation. We find that (i) the ZnO surface gives rise to OH frequency shifts up to a distance of about 4 Å from the surface; (ii) the spectrum contains a number of overlapping signals arising from different chemical species, with the frequencies decreasing in the order ν(adsorbed hydroxide) > ν(non-adsorbed water) > ν(surface hydroxide) > ν(adsorbed water); (iii) stretching frequencies are strongly influenced by the hydrogen bond pattern of these interfacial species. Finally, we have been able to identify substantial correlations between the stretching frequencies and hydrogen bond lengths for all species.

1.
M. A.
Henderson
,
Surf. Sci. Rep.
46
,
1
(
2002
).
2.
J.
Carrasco
,
A.
Hodgson
, and
A.
Michaelides
,
Nat. Mater.
11
,
667
(
2012
).
3.
O.
Björneholm
,
M. H.
Hansen
,
A.
Hodgson
,
L.-M.
Liu
,
D. T.
Limmer
,
A.
Michaelides
,
P.
Pedevilla
,
J.
Rossmeisl
,
H.
Shen
,
G.
Tocci
,
E.
Tyrode
,
M.-M.
Walz
,
J.
Werner
, and
H.
Bluhm
,
Chem. Rev.
116
,
7698
(
2016
).
4.
D.
Raymand
,
A. C. T.
van Duin
,
W. A.
Goddard
 III
,
K.
Hermansson
, and
D.
Spångberg
,
J. Phys. Chem. C
115
,
8573
(
2011
).
5.
M.
Raju
,
S.-Y.
Kim
,
A. C. T.
van Duin
, and
K. A.
Fichthorn
,
J. Phys. Chem. C
117
,
10558
(
2013
).
6.
R.
Sato
,
S.
Ohkuma
,
Y.
Shibuta
,
F.
Shimojo
, and
S.
Yamaguchi
,
J. Phys. Chem. C
119
,
28925
(
2015
).
7.
M.
Farnesi Camellone
,
F.
Negreiros Ribeiro
,
L.
Szabová
,
Y.
Tateyama
, and
S.
Fabris
,
J. Am. Chem. Soc.
138
,
11560
(
2016
).
8.
H.
Hussain
,
G.
Tocci
,
T.
Woolcot
,
X.
Torrelles
,
C. L.
Pang
,
D. S.
Humphrey
,
C. M.
Yim
,
D. C.
Grinter
,
G.
Cabailh
,
O.
Bikondoa
,
R.
Lindsay
,
J.
Zegenhagen
,
A.
Michaelides
, and
G.
Thornton
,
Nat. Mater.
16
,
461
(
2016
).
9.
O.
Dulub
,
B.
Meyer
, and
U.
Diebold
,
Phys. Rev. Lett.
95
,
136101
(
2005
).
10.
H.
Xu
,
R. Q.
Zhang
,
A. M. C.
Ng
,
A. B.
Djuris̆ić
,
H. T.
Chan
,
W. K.
Chan
, and
S. Y.
Tong
,
J. Phys. Chem. C
115
,
19710
(
2011
).
11.
Ü.
Özgür
,
Y. I.
Alivov
,
C.
Liu
,
A.
Teke
,
M. A.
Reshchikov
,
S.
Doğan
,
V.
Avrutin
,
S.-J.
Cho
, and
H.
Morkoç
,
J. Appl. Phys.
98
,
041301
(
2005
).
13.
S. K.
Arya
,
S.
Saha
,
J. E.
Ramirez-Vick
,
V.
Gupta
,
S.
Bhansali
, and
S. P.
Singh
,
Anal. Chim. Acta
737
,
1
(
2012
).
14.
K.
Maeda
and
K.
Domen
,
J. Phys. Chem. Lett.
1
,
2655
(
2010
).
15.
A.
Tereshchenko
,
M.
Bechelany
,
R.
Viter
,
V.
Khranovskyy
,
V.
Smyntyna
,
N.
Starodub
, and
R.
Yakimova
,
Sens. Actuators, B
229
,
664
(
2016
).
16.
J. W.
Rasmussen
,
E.
Martinez
,
P.
Louka
, and
D. G.
Wingett
,
Expert Opin. Drug Delivery
7
,
1063
(
2010
).
17.
Y.
Wang
,
M.
Muhler
, and
C.
Wöll
,
Phys. Chem. Chem. Phys.
8
,
1521
(
2006
).
18.
F.
Viñes
,
A.
Iglesias-Juez
,
F.
Illas
, and
M.
Fernández-García
,
J. Phys. Chem. C
118
,
1492
(
2014
).
19.
G.
Tocci
and
A.
Michaelides
,
J. Phys. Chem. Lett.
5
,
474
(
2014
).
20.
N.
Kharche
,
M. S.
Hybertsen
, and
J. T.
Muckerman
,
Phys. Chem. Chem. Phys.
16
,
12057
(
2014
).
21.
V.
Quaranta
,
M.
Hellström
, and
J.
Behler
,
J. Phys. Chem. Lett.
8
,
1476
(
2017
).
22.
23.
J.
Behler
and
M.
Parrinello
,
Phys. Rev. Lett.
98
,
146401
(
2007
).
24.
J.
Behler
,
J. Chem. Phys.
134
,
074106
(
2011
).
25.
J.
Behler
,
J. Phys.: Condens. Matter
26
,
183001
(
2014
).
26.
J.
Behler
,
Angew. Chem. Int. Ed.
56
,
12828
(
2017
).
27.
T.
Morawietz
,
V.
Sharma
, and
J.
Behler
,
J. Chem. Phys.
136
,
064103
(
2012
).
28.
M.
Gastegger
,
J.
Behler
, and
P.
Marquetand
,
Chem. Sci.
8
,
6924
(
2017
).
29.
B.
Hammer
,
L. B.
Hansen
, and
J. K.
Nørskov
,
Phys. Rev. B
59
,
7413
(
1999
).
30.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
31.
K.
Forster-Tonigold
and
A.
Groß
,
J. Chem. Phys.
141
,
064501
(
2014
).
32.
T.
Morawietz
and
J.
Behler
,
J. Phys. Chem. A
117
,
7356
(
2013
).
33.
T.
Morawietz
,
A.
Singraber
,
C.
Dellago
, and
J.
Behler
,
Proc. Natl. Acad. Sci. U. S. A.
113
,
8368
(
2016
).
34.
S. K.
Natarajan
and
J.
Behler
,
Phys. Chem. Chem. Phys.
18
,
28704
(
2016
).
35.
S. K.
Natarajan
and
J.
Behler
,
J. Phys. Chem. C
121
,
4368
(
2017
).
36.
M.
Hellström
and
J.
Behler
,
J. Phys. Chem. Lett.
7
,
3302
(
2016
).
37.
M.
Hellström
and
J.
Behler
,
Phys. Chem. Chem. Phys.
19
,
82
(
2017
).
38.
M.
Hellström
and
J.
Behler
,
J. Phys. Chem. B
121
,
4184
(
2017
).
39.
E. H.
Kisi
and
M. M.
Elcombe
,
Acta Crystallogr., Sect. C: Cryst. Struct. Commun.
45
,
1867
(
1989
).
40.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
41.
A.
Luzar
and
D.
Chandler
,
Phys. Rev. Lett.
76
,
928
(
1996
).
42.
P. D.
Mitev
,
A.
Eriksson
,
J.-F.
Boily
, and
K.
Hermansson
,
Phys. Chem. Chem. Phys.
17
,
10520
(
2015
).
43.
L.
Pejov
,
D.
Spångberg
, and
K.
Hermansson
,
J. Chem. Phys.
133
,
174513
(
2010
).
44.
D.
Marx
,
M. E.
Tuckerman
,
J.
Hutter
, and
M.
Parrinello
,
Nature
397
,
601
(
1999
).
45.
J. V.
Lill
,
G. A.
Parker
, and
J. C.
Light
,
Chem. Phys. Lett.
89
,
483
(
1982
).
46.
J. C.
Light
,
I. P.
Hamilton
, and
J. V.
Lill
,
J. Chem. Phys.
82
,
1400
(
1985
).
47.
Z.
Bac̆ić
and
J. C.
Light
,
Annu. Rev. Phys. Chem.
40
,
469
(
1989
).
48.
A. L.
Stancik
and
E. B.
Brauns
,
Vib. Spectrosc.
47
,
66
(
2008
).
49.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
50.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
51.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
52.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
53.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
54.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
55.
C. J.
Fecko
,
J. D.
Eaves
,
J. J.
Loparo
,
A.
Tokmakoff
, and
P. L.
Geissler
,
Science
301
,
1698
(
2003
).
56.
G. A.
Jeffrey
,
An Introduction to Hydrogen Bonding
(
Oxford University Press
,
1997
).
57.
K.
Hermansson
,
P. A.
Bopp
,
D.
Spångberg
,
L.
Pejov
,
I.
Bakó
, and
P. D.
Mitev
,
Chem. Phys. Lett.
514
,
1
(
2011
).
58.
T.
Corridoni
,
A.
Sodo
,
F.
Bruni
,
M. A.
Ricci
, and
M.
Nardone
,
Chem. Phys.
336
,
183
(
2007
).
59.
A.
Sen
,
P. D.
Mitev
,
A.
Eriksson
, and
K.
Hermansson
,
Int. J. Quantum Chem.
116
,
67
(
2016
).
60.
W. S.
Benedict
,
N.
Gailar
, and
E. K.
Plyler
,
J. Chem. Phys.
24
,
1139
(
1956
).
61.
J. C.
Owrutsky
,
N. H.
Rosenbaum
,
L. M.
Tack
, and
R. J.
Saykally
,
J. Chem. Phys.
83
,
5338
(
1985
).
You do not currently have access to this content.