We investigate the nonequilibrium stationary states of systems consisting of chemical reactions among molecules of several chemical species. To this end, we introduce and develop a stochastic formulation of nonequilibrium thermodynamics of chemical reaction systems based on a master equation defined on the space of microscopic chemical states and on appropriate definitions of entropy and entropy production. The system is in contact with a heat reservoir and is placed out of equilibrium by the contact with particle reservoirs. In our approach, the fluxes of various types, such as the heat and particle fluxes, play a fundamental role in characterizing the nonequilibrium chemical state. We show that the rate of entropy production in the stationary nonequilibrium state is a bilinear form in the affinities and the fluxes of reaction, which are expressed in terms of rate constants and transition rates, respectively. We also show how the description in terms of microscopic states can be reduced to a description in terms of the numbers of particles of each species, from which follows the chemical master equation. As an example, we calculate the rate of entropy production of the first and second Schlögl reaction models.

1.
H. E.
Avery
,
Basic Reaction Kinetics and Mechanisms
(
Macmillan
,
London
,
1974
).
2.
E. N.
Yeremin
,
The Foundations of Chemical Kinetics
(
Mir
,
Moscow
,
1979
).
3.
P. L.
Houston
,
Chemical Kinetics and Reaction Dynamics
(
McGraw-Hill
,
New York
,
2001
).
4.
G.
Nicolis
and
I.
Prigogine
,
Self-Organization in Nonequilibrium Systems
(
Wiley
,
New York
,
1977
).
5.
N. G.
van Kampen
,
Stochastic Processes in Physics and Chemistry
(
North-Holland
,
Amsterdam
,
1981
).
6.
T.
Tomé
and
M. J.
de Oliveira
,
Stochastic Dynamics and Irreversibility
(
Springer
,
Heidelberg
,
2015
).
7.
D. A.
McQuarrie
,
J. Appl. Probab.
4
,
413
(
1967
).
8.
T. G.
Kurtz
,
J. Chem. Phys.
57
,
2976
(
1972
).
9.
D. T.
Gillespie
,
Physica A
188
,
404
(
1992
).
10.
D. T.
Gillespie
,
J. Chem. Phys.
113
,
297
(
2000
).
11.
L.
Jiu-Li
,
C.
Van den Broeck
, and
G.
Nicolis
,
Z. Phys. B
56
,
165
(
1984
).
12.
C. Y.
Mou
,
J.-L.
Luo
, and
G.
Nicolis
,
J. Chem. Phys.
84
,
7011
(
1986
).
13.
J. M.
Horowitz
,
J. Chem. Phys.
143
,
044111
(
2015
).
14.
H.
Ge
and
H.
Qian
,
Chem. Phys.
472
,
241
(
2016
).
15.
H.
Qian
,
S.
Kjelstrup
,
A. B.
Kolomelsky
, and
D.
Bedeaux
,
J. Phys.: Condens. Matter
28
,
153004
(
2016
).
16.
T.
Tomé
,
Braz. J. Phys.
36
,
1285
(
2006
).
17.
T.
Tomé
and
M. J.
de Oliveira
,
Phys. Rev. E
82
,
021120
(
2010
).
18.
T.
Tomé
and
M. J.
de Oliveira
,
Phys. Rev. Lett.
108
,
020601
(
2012
).
19.
T.
Tomé
and
M. J.
de Oliveira
,
Phys. Rev. E
91
,
042140
(
2015
).
20.
R. K. P.
Zia
and
B.
Schmittmann
,
J. Phys. A: Math. Gen.
39
,
L407
(
2006
).
21.
R. K. P.
Zia
and
B.
Schmittmann
,
J. Stat. Mech.: Theory Exp.
2007
,
P07012
.
22.
T.
Schmiedl
and
U.
Seifert
,
J. Chem. Phys.
126
,
044101
(
2007
).
23.
U.
Seifert
,
Eur. Phys. J. B
64
,
423
(
2008
).
24.
M.
Esposito
,
K.
Lindenberg
, and
C.
Van den Broeck
,
Phys. Rev. Lett.
102
,
130602
(
2009
).
25.
C.
Van de Broeck
and
M.
Esposito
,
Phys. Rev. E
82
,
011144
(
2010
).
26.
M.
Esposito
,
Phys. Rev. E
85
,
041125
(
2012
).
27.
U.
Seifert
,
Rep. Prog. Phys.
75
,
126001
(
2012
).
28.
X.-J.
Zhang
,
H.
Qian
, and
M.
Qian
,
Phys. Rep.
510
,
1
(
2012
).
29.
H.
Ge
,
M.
Qian
, and
H.
Qian
,
Phys. Rep.
510
,
87
(
2012
).
30.
D.
Luposchainsky
and
H.
Hinrichsen
,
J. Stat. Phys.
153
,
828
(
2013
).
31.
W.
Wu
and
J.
Wang
,
J. Chem. Phys.
141
,
105104
(
2014
).
32.
I.
Prigogine
,
Etude Thermodynamique des Phénomènes Irréversibles
(
Desoer
,
Liège
,
1947
).
33.
I.
Prigogine
and
R.
Defay
,
Thermodynamique Chimique
(
Desoer
,
Liège
,
1950
).
34.
I.
Prigogine
,
Introduction to Thermodynamics of Irreversible Processes
(
Thomas
,
Springfield
,
1955
).
35.
S. R.
de Groot
and
P.
Mazur
,
Non-Equilibrium Thermodynamics
(
North-Holland
,
Amsterdam
,
1962
).
36.
P.
Glansdorff
and
I.
Prigogine
,
Thermodynamics of Structure, Stability and Fluctuations
(
Wiley
,
New York
,
1971
).
37.
Th.
De Donder
,
L’Affinité
(
Lamertin
,
Bruxelles
,
1927
).
38.
Th.
De Donder
,
Bulletin de la Classe des Sciences, Académie Royale de Belgique
(
Palais des Académies, Bruxelles
,
1922
), Vol. 8, pp.
197
205
.
39.
Th.
De Donder
,
C. R. Hebd. Seanc. Acad. Sci.
180
,
1334
1337
(
1925
).
40.
R.
Clausius
,
Ann. Phys. Chem.
201
,
353
400
(
1865
).
41.
J.
Schnakenberg
,
Rev. Mod. Phys.
48
,
571
(
1976
).
42.
Y.
De Decker
,
J.-F.
Derivaux
, and
G.
Nicolis
,
Phys. Rev. E
93
,
042127
(
2016
).
43.
S. A.
Arrhenius
,
Z. Phys. Chem.
4U
,
96
(
1889
);
S. A.
Arrhenius
,
Z. Phys. Chem.
4U
,
226
(
1889
).
44.
W. J.
Moore
,
Physical Chemistry
(
Longman
,
London
,
1965
).
45.
H. B.
Callen
,
Thermodynamics
(
Wiley
,
New York
,
1960
).
46.
L. E.
Reichl
,
A Modern Course in Statistical Mechanics
(
Universiy of Texas Press
,
Austin
,
1980
).
47.
D.
Kondepudi
and
I.
Prigogine
,
Modern Thermodynamics
(
Wiley
,
New York
,
1998
).
48.
M. J.
de Oliveira
,
Equilibrium Thermodynamics
(
Springer
,
Heidelberg
,
2013
).
49.
G. N.
Lewis
and
M.
Randall
,
Thermodynamics and the Free Energy of Chemical Substances
(
McGraw-Hill
,
New York
,
1923
).
50.
L.
Onsager
,
Phys. Rev.
37
,
405
(
1931
);
L.
Onsager
,
Phys. Rev.
38
,
2265
(
1931
).
51.
F.
Schlögl
,
Z. Phys.
253
,
147
(
1972
).
52.
P.
Gaspard
,
J. Chem. Phys.
120
,
8898
(
2004
).
53.
M.
Vellela
and
H.
Qian
,
J. R. Soc. Interface
6
,
925
(
2009
).
54.
R. G.
Endres
,
PLoS One
10
,
e0121681
(
2015
).
55.
R. G.
Endres
,
Sci. Rep.
7
,
14437
(
2017
).
56.
H.
Qian
,
P.
Ao
,
Y.
Tu
, and
J.
Wang
,
Chem. Phys. Lett.
665
,
153
(
2016
).
You do not currently have access to this content.