This study was focused on improving the numerical accuracy of the dissipative particle dynamics simulation via modifying its numerical time integration scheme. Despite the integration of the pairwise Langevin part dealt with by most of the previous studies, we paid attention to the improvement of the standard Liouville part. The numerical accuracy was measured by the configurational temperature in this study. Employing a fourth order symplectic scheme showed a significant improvement of the numerical accuracy for the simulations especially with a large time increment when comparing it with existing schemes, which indicates that enough resolution in time was attained when our modified scheme was employed. In addition, a set of simulations was performed for a wider range of time increments than previous studies. The results showed that the computational error demonstrated different orders of accuracy for different time increment ranges, which led to the fact that the dominant effect on the error is conservative and random forces for the large and small increment ranges.

1.
P. J.
Hoogerbrugge
and
J. M. V. A.
Koelman
, “
Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics
,”
Europhys. Lett.
19
,
155
160
(
1992
).
2.
P.
Español
and
P. B.
Warren
, “
Perspective: Dissipative particle dynamics
,”
J. Chem. Phys.
146
,
150901
(
2017
).
3.
D. S.
Bolintineanu
,
G. S.
Grest
,
J. B.
Lechman
,
F.
Pierce
,
S. J.
Plimpton
, and
P. R.
Schunk
, “
Particle dynamics modeling methods for colloid suspensions
,”
Comput. Part. Mech.
1
,
321
356
(
2014
).
4.
R.
Groot
and
K.
Rabone
, “
Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants
,”
Biophys. J.
81
,
725
736
(
2001
).
5.
D.
Fedosov
,
B.
Caswell
, and
G.
Karniadakis
, “
Systematic coarse-graining of spectrin-level red blood cell models
,”
Comput. Methods Appl. Mech. Eng.
199
,
1937
1948
(
2010
).
6.
G.
Sevink
and
J.
Fraaije
, “
Efficient solvent-free dissipative particle dynamics for lipid bilayers
,”
Soft Matter
10
,
5129
5146
(
2014
).
7.
H.
Liu
,
Y.-H.
Xue
,
H.-J.
Qian
,
Z.-Y.
Lu
, and
C.-C.
Sun
, “
A practical method to avoid bond crossing in two-dimensional dissipative particle dynamics simulations
,”
J. Chem. Phys.
129
,
024902
(
2008
).
8.
D. A.
Fedosov
,
G. E.
Karniadakis
, and
B.
Caswell
, “
Steady shear rheometry of dissipative particle dynamics models of polymer fluids in reverse Poiseuille flow
,”
J. Chem. Phys.
132
,
144103
(
2010
).
9.
P.
Español
and
P.
Warren
, “
Statistical mechanics of dissipative particle dynamics
,”
Europhys. Lett.
30
,
191
196
(
1995
).
10.
M. B.
Liu
,
G. R.
Liu
,
L. W.
Zhou
, and
J. Z.
Chang
, “
Dissipative particle dynamics (DPD): An overview and recent developments
,”
Arch. Comput. Methods Eng.
22
,
529
556
(
2015
).
11.
R. D.
Groot
and
P. B.
Warren
, “
Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation
,”
J. Chem. Phys.
107
,
4423
4435
(
1997
).
12.
T.
Shardlow
, “
Splitting for dissipative particle dynamics
,”
SIAM J. Sci. Comput.
24
,
1267
1282
(
2003
).
13.
I.
Pagonabarraga
,
M. H. J.
Hagen
, and
D.
Frenkel
, “
Self-consistent dissipative particle dynamics algorithm
,”
Europhys. Lett.
42
,
377
382
(
1998
).
14.
M.
Serrano
,
G.
De Fabritiis
,
P.
Español
, and
P. V.
Coveney
, “
A stochastic trotter integration scheme for dissipative particle dynamics
,”
Math. Comput. Simul.
72
,
190
194
(
2006
).
15.
O.
Farago
and
N.
Grønbech-Jensen
, “
On the connection between dissipative particle dynamics and the Itô-Stratonovich dilemma
,”
J. Chem. Phys.
144
,
084102
(
2016
).
16.
E.
Hairer
,
C.
Lubich
, and
G.
Wanner
, “
Geometric numerical integration illustrated by the Störmer–Verlet method
,”
Acta Numer.
12
,
399
450
(
2003
).
17.
N.
Grønbech-Jensen
and
O.
Farago
, “
A simple and effective Verlet-type algorithm for simulating Langevin dynamics
,”
Mol. Phys.
111
,
983
991
(
2013
). .
18.
C. P.
Lowe
, “
An alternative approach to dissipative particle dynamics
,”
Europhys. Lett.
47
,
145
151
(
1999
).
19.
E. A. J. F.
Peters
, “
Elimination of time step effects in DPD
,”
Europhys. Lett.
66
,
311
317
(
2004
).
20.
B.
Leimkuhler
and
X.
Shang
, “
On the numerical treatment of dissipative particle dynamics and related systems
,”
J. Comput. Phys.
280
,
72
95
(
2015
).
21.
B.
Leimkuhler
and
X.
Shang
, “
Pairwise adaptive thermostats for improved accuracy and stability in dissipative particle dynamics
,”
J. Comput. Phys.
324
,
174
193
(
2016
).
22.
H.
Yoshida
, “
Construction of higher order symplectic integrators
,”
Phys. Lett. A
150
,
262
268
(
1990
).
23.
X.
Fan
,
N.
Phan-Thien
,
S.
Chen
,
X.
Wu
, and
T. Y.
Ng
, “
Simulating flow of DNA suspension using dissipative particle dynamics
,”
Phys. Fluids
18
,
063102
(
2006
).
24.
Z.
Li
,
Y.-H.
Tang
,
H.
Lei
,
B.
Caswell
, and
G. E.
Karniadakis
, “
Energy-conserving dissipative particle dynamics with temperature-dependent properties
,”
J. Comput. Phys.
265
,
113
127
(
2014
).
25.
Y.
Han
and
D. G.
Grier
, “
Configurational temperatures and interactions in charge-stabilized colloid
,”
J. Chem. Phys.
122
,
064907
(
2005
).
26.
B. D.
Butler
,
G.
Ayton
,
O. G.
Jepps
, and
D. J.
Evans
, “
Configurational temperature: Verification of Monte-Carlo simulations
,”
J. Chem. Phys.
109
,
6519
6522
(
1998
).
You do not currently have access to this content.