To understand the initial hydration processes of CaCl2, we performed molecular simulations employing the force field based on the theory of electronic continuum correction with rescaling. Integrated tempering sampling molecular dynamics were combined with ab initio calculations to overcome the sampling challenge in cluster structure search and refinement. The calculated vertical detachment energies of CaCl2(H2O)n (n = 0–8) were compared with the values obtained from photoelectron spectra, and consistency was found between the experiment and computation. Separation of the Cl—Ca ion pair is investigated in CaCl2(H2O)n anions, where the first Ca—Cl ionic bond required 4 water molecules, and both Ca—Cl bonds are broken when the number of water molecules is larger than 7. For neutral CaCl2(H2O)n clusters, breaking of the first Ca—Cl bond starts at n = 5, and 8 water molecules are not enough to separate the two ion pairs. Comparing with the observations on magnesium chloride, it shows that separating one ion pair in CaCl2(H2O)n requires fewer water molecules than those for MgCl2(H2O)n. Coincidentally, the solubility of calcium chloride is higher than that of magnesium chloride in bulk solutions.

1.
Y. Q.
Gao
,
J. Phys. Chem. B
116
(
33
),
9934
9943
(
2012
).
2.
P.
Lo Nostro
and
B. W.
Ninham
,
Chem. Rev.
112
(
4
),
2286
2322
(
2012
).
3.
K. D.
Collins
,
G. W.
Neilson
, and
J. E.
Enderby
,
Biophys. Chem.
128
(
2-3
),
95
104
(
2007
).
4.
R.
Buchner
,
S. G.
Capewell
,
G.
Hefter
, and
P. M.
May
,
J. Phys. Chem. B
103
(
7
),
1185
1192
(
1999
).
5.
K. J.
Tielrooij
,
N.
Garcia-Araez
,
M.
Bonn
, and
H. J.
Bakker
,
Science
328
(
5981
),
1006
1009
(
2010
).
6.
L.
Yang
,
Y.
Fan
, and
Y. Q.
Gao
,
J. Phys. Chem. B
115
(
43
),
12456
12465
(
2011
).
7.
X.-B.
Wang
,
H.-K.
Woo
,
B.
Jagoda-Cwiklik
,
P.
Jungwirth
, and
L.-S.
Wang
,
Phys. Chem. Chem. Phys.
8
(
37
),
4294
4296
(
2006
).
8.
B.
Jagoda-Cwiklik
,
P.
Jungwirth
,
L.
Rulisek
,
P.
Milko
,
J.
Roithova
,
J.
Lemaire
,
P.
Maitre
,
J. M.
Ortega
, and
D.
Schroeder
,
ChemPhysChem
8
(
11
),
1629
1639
(
2007
).
9.
J.
Paterová
,
J.
Heyda
,
P.
Jungwirth
,
C. J.
Shaffer
,
A.
Révész
,
E. L.
Zins
, and
D.
Schröder
,
J. Phys. Chem. A
115
(
25
),
6813
6819
(
2011
).
10.
Y.
Feng
,
M.
Cheng
,
X.-Y.
Kong
,
H.-G.
Xu
, and
W.-J.
Zheng
,
Phys. Chem. Chem. Phys.
13
(
35
),
15865
15872
(
2011
).
11.
J. W.
DePalma
,
P. J.
Kelleher
,
C. J.
Johnson
,
J. A.
Fournier
, and
M. A.
Johnson
,
J. Phys. Chem. A
119
(
30
),
8294
8302
(
2015
).
12.
Z.
Zeng
,
G.-L.
Hou
,
J.
Song
,
G.
Feng
,
H.-G.
Xu
, and
W.-J.
Zheng
,
Phys. Chem. Chem. Phys.
17
(
14
),
9135
9147
(
2015
).
13.
W.-J.
Zhang
,
G.-L.
Hou
,
P.
Wang
,
H.-G.
Xu
,
G.
Feng
,
X.-L.
Xu
, and
W.-J.
Zheng
,
J. Chem. Phys.
143
(
5
),
054302
(
2015
).
14.
J.
Tandy
,
C.
Feng
,
A.
Boatwright
,
G.
Sarma
,
A. M.
Sadoon
,
A.
Shirley
,
N. D.
Rodrigues
,
E. M.
Cunningham
,
S. F.
Yang
, and
A. M.
Ellis
,
J. Chem. Phys.
144
(
12
),
121103
(
2016
).
15.
L.
Jiang
,
T.
Wende
,
R.
Bergmann
,
G.
Meijer
, and
K. R.
Asmis
,
J. Am. Chem. Soc.
132
(
21
),
7398
7404
(
2010
).
16.
J. C.
Rienstra-Kiracofe
,
G. S.
Tschumper
,
H. F.
Schaefer
,
S.
Nandi
, and
G. B.
Ellison
,
Chem. Rev.
102
(
1
),
231
282
(
2002
).
17.
C.
Dedonder-Lardeux
,
G.
Gregoire
,
C.
Jouvet
,
S.
Martrenchard
, and
D.
Solgadi
,
Chem. Rev.
100
(
11
),
4023
4037
(
2000
).
18.
C.-W.
Liu
,
F.
Wang
,
L.
Yang
,
X.-Z.
Li
,
W.-J.
Zheng
, and
Y. Q.
Gao
,
J. Phys. Chem. B
118
(
3
),
743
751
(
2014
).
19.
T.
Wende
,
N.
Heine
,
T. I.
Yacovitch
,
K. R.
Asmis
,
D. M.
Neumark
, and
L.
Jiang
,
Phys. Chem. Chem. Phys.
18
(
1
),
267
277
(
2016
).
20.
A.
Mizoguchi
,
Y.
Ohshima
, and
Y.
Endo
,
J. Chem. Phys.
135
(
6
),
064307
(
2011
).
21.
G.
Feng
,
G.-L.
Hou
,
H.-G.
Xu
,
Z.
Zeng
, and
W.-J.
Zheng
,
Phys. Chem. Chem. Phys.
17
(
8
),
5624
5631
(
2015
).
22.
R.-Z.
Li
,
C.-W.
Liu
,
Y. Q.
Gao
,
H.
Jiang
,
H.-G.
Xu
, and
W.-J.
Zheng
,
J. Am. Chem. Soc.
135
(
13
),
5190
5199
(
2013
).
23.
P.
Jungwirth
,
J. Phys. Chem. A
104
(
1
),
145
148
(
2000
).
24.
C.-W.
Liu
,
G.-L.
Hou
,
W.-J.
Zheng
, and
Y. Q.
Gao
,
Theor. Chem. Acc.
133
,
1550
(
2014
).
25.
G. L.
Hou
,
C. W.
Liu
,
R. Z.
Li
,
H. G.
Xu
,
Y. Q.
Gao
, and
W. J.
Zheng
,
J. Phys. Chem. Lett.
8
(
1
),
13
20
(
2017
).
26.
Y.
Zhou
,
D. S.
Hou
,
J. Y.
Jiang
, and
P. G.
Wang
,
Constr. Build. Mater.
126
,
991
1001
(
2016
).
27.
M. V.
Achkeeva
,
N. V.
Romanyuk
,
E. A.
Frolova
,
D. F.
Kondakov
,
D. M.
Khomyakov
, and
V. P.
Danilov
,
Theor. Found. Chem. Eng.
49
(
4
),
481
484
(
2015
).
28.
M. A.
Andreeva
,
V. V.
Gil
,
N. D.
Pismenskaya
,
V. V.
Nikonenko
,
L.
Dammak
,
C.
Larchet
,
D.
Grande
, and
N. A.
Kononenko
,
J. Membr. Sci.
540
,
183
191
(
2017
).
29.
J. M.
Yang
and
J. S.
Kim
,
J. Appl. Polym. Sci.
135
(
6
),
45821
(
2018
).
30.
D. E.
Clapham
,
Cell
131
(
6
),
1047
1058
(
2007
).
31.
T. M.
Perney
,
L. D.
Hirning
,
S. E.
Leeman
, and
R. J.
Miller
,
Proc. Natl. Acad. Sci. U. S. A.
83
(
17
),
6656
6659
(
1986
).
32.
A. G.
Szentgyorgyi
,
Biophys. J.
15
(
7
),
707
723
(
1975
).
33.
A. B.
Parekh
,
Proc. Natl. Acad. Sci. U. S. A.
97
(
24
),
12933
12934
(
2000
).
34.
K.
Averin
,
C.
Villa
,
C. D.
Krawczeski
,
J.
Pratt
,
E.
King
,
J. L.
Jefferies
,
D. P.
Nelson
,
D. S.
Cooper
,
T. D.
Ryan
,
J.
Sawyer
,
J. A.
Towbin
, and
A.
Lorts
,
Pediatr. Cardiol.
37
(
3
),
610
617
(
2016
).
35.
T.
Todorova
,
P. H.
Huenenberger
, and
J.
Hutter
,
J. Chem. Theory Comput.
4
(
5
),
779
789
(
2008
).
36.
Y.
Mao
,
Y.
Du
,
X.
Cang
,
J.
Wang
,
Z.
Chen
,
H.
Yang
, and
H.
Jiang
,
J. Phys. Chem. B
117
(
3
),
850
858
(
2013
).
37.
T.
Megyes
,
I.
Bako
,
S.
Balint
,
T.
Grosz
, and
T.
Radnai
,
J. Mol. Liq.
129
(
1-2
),
63
74
(
2006
).
38.
F. J.
Amador
,
P. B.
Stathopulos
,
M.
Enomoto
, and
M.
Ikura
,
FEBS J.
280
(
21
),
5456
5470
(
2013
).
39.
H.-Z.
He
,
M.
Wang
,
D. S.-H.
Chan
,
C.-H.
Leung
,
X.
Lin
,
J.-M.
Lin
, and
D.-L.
Ma
,
Methods
64
(
3
),
212
217
(
2013
).
40.
V.
Rodriguez
,
M.
Rivoira
,
A.
Marchionatti
,
A.
Perez
, and
N.
Tolosa de Talamoni
,
Arch. Biochem. Biophys.
540
(
1-2
),
19
25
(
2013
).
41.
H.
Ohtaki
and
T.
Radnai
,
Chem. Rev.
93
(
3
),
1157
1204
(
1993
).
42.
F.
Jalilehvand
,
D.
Spangberg
,
P.
Lindqvist-Reis
,
K.
Hermansson
,
I.
Persson
, and
M.
Sandstrom
,
J. Am. Chem. Soc.
123
(
3
),
431
441
(
2001
).
43.
A.
Saxena
and
D.
Sept
,
J. Chem. Theory Comput.
9
(
8
),
3538
3542
(
2013
).
44.
C.
Oostenbrink
,
A.
Villa
,
A. E.
Mark
, and
W. F.
Van Gunsteren
,
J. Comput. Chem.
25
(
13
),
1656
1676
(
2004
).
45.
L. X.
Dang
and
D. E.
Smith
,
J. Chem. Phys.
102
(
8
),
3483
3484
(
1995
).
46.
P.
Bjelkmar
,
P.
Larsson
,
M. A.
Cuendet
,
B.
Hess
, and
E.
Lindahl
,
J. Chem. Theory Comput.
6
(
2
),
459
466
(
2010
).
47.
M.
Pavlov
,
P. E. M.
Siegbahn
, and
M.
Sandstrom
,
J. Phys. Chem. A
102
(
1
),
219
228
(
1998
).
48.
I.
Leontyev
and
A.
Stuchebrukhov
,
Phys. Chem. Chem. Phys.
13
(
7
),
2613
2626
(
2011
).
49.
Y. Q.
Gao
,
J. Chem. Phys.
128
(
6
),
064105
(
2008
).
50.
P. E.
Mason
,
E.
Wernersson
, and
P.
Jungwirth
,
J. Phys. Chem. B
116
(
28
),
8145
8153
(
2012
).
51.
E.
Pluharova
,
P. E.
Mason
, and
P.
Jungwirth
,
J. Phys. Chem. A
117
(
46
),
11766
11773
(
2013
).
52.
M.
Kohagen
,
P. E.
Mason
, and
P.
Jungwirth
,
J. Phys. Chem. B
118
(
28
),
7902
7909
(
2014
).
53.
M.
Kohagen
,
M.
Lepsik
, and
P.
Jungwirth
,
J. Phys. Chem. Lett.
5
(
22
),
3964
3969
(
2014
).
54.
Z.
Gong
and
H.
Sun
,
J. Chem. Inf. Model.
57
(
7
),
1599
1608
(
2017
).
55.
J. P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
, 3rd ed. (
Academic Press
,
2006
).
56.
D. A.
Case
et al., AMBER version 12, http://ambermd.org,
University of California
,
San Francisco
,
2012
.
57.
J. D.
Chai
and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
10
(
44
),
6615
6620
(
2008
).
58.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
,
J. Chem. Phys.
72
(
1
),
650
654
(
1980
).
59.
J. A.
Pople
,
M.
Headgordon
, and
K.
Raghavachari
,
J. Chem. Phys.
87
(
10
),
5968
5975
(
1987
).
60.
A. E.
Reed
,
R. B.
Weinstock
, and
F.
Weinhold
,
J. Chem. Phys.
83
(
2
),
735
746
(
1985
).
61.
G.
Feng
,
C.-W.
Liu
,
Z.
Zeng
,
G.-L.
Hou
,
H.-G.
Xu
, and
W.-J.
Zheng
,
Phys. Chem. Chem. Phys.
19
(
23
),
15562
15569
(
2017
).
62.
P.
Pradyot
,
Handbook of Inorganic Chemicals
(
McGraw-Hill Companies, Inc.
,
2003
).
63.
M. I.
Chaudhari
,
M.
Soniat
, and
S. B.
Rempe
,
J. Phys. Chem. B
119
(
28
),
8746
8753
(
2015
).
64.
M. I.
Chaudhari
,
S. B.
Rempe
, and
L. R.
Pratt
,
J. Chem. Phys.
147
(
16
),
161728
(
2017
).
You do not currently have access to this content.