Although they have been widely used as models for oxide surfaces, the deprotonation behaviors of the Keggin-ions (MeAl127+) and typical oxide surfaces are very different. On Keggin-ions, the deprotonation occurs over a very narrow pH range at odds with the broad charging curve of larger oxide surfaces. Depending on the Me concentration, the deprotonation curve levels off sooner (high Me concentration) or later (for low Me concentration). The leveling off shows the onset of aggregation before which the Keggin-ions are present as individual units. We show that the atypical titration data previously observed for some GaAl12 solutions in comparison to the originally reported data can be explained by the presence of Ga2Al11 ions. The pKa value of aquo-groups bound to octahedral Ga was determined from ab initio molecular dynamics simulations relative to the pure GaAl12 ions. Using these results within a surface complexation model, the onset of deprotonation of the crude solution is surprisingly well predicted and the ratio between the different species is estimated to be in the proportion 20 (Ga2Al11) : 20 (Al13) : 60 (GaAl12).

1.
G.
Furrer
,
C.
Ludwig
, and
P. W.
Schindler
,
J. Colloid Interface Sci.
149
(
1
),
56
67
(
1992
).
2.
A. P.
Lee
,
G.
Furrer
, and
W. H.
Casey
,
J. Colloid Interface Sci.
250
(
1
),
269
270
(
2002
).
3.
W. H.
Casey
and
T. W.
Swaddle
,
Rev. Geophys.
41
(
2
),
1
20
, https://doi.org/10.1029/2002RG000118 (
2003
).
4.
W. H.
Casey
,
Chem. Rev.
106
(
1
),
1
16
(
2006
).
5.
A.
Amirbahman
,
M.
Gfeller
, and
G.
Furrer
,
Geochim. Cosmochim. Acta
64
(
5
),
911
919
(
2000
).
6.
G.
Furrer
,
M.
Gfeller
, and
B.
Wehrli
,
Geochim. Cosmochim. Acta
63
(
19-20
),
3069
3076
(
1999
).
7.
T.
Liu
,
Langmuir
26
(
12
),
9202
9213
(
2010
).
8.
L.
Cademartiri
and
V.
Kitaev
,
Nanoscale
3
(
9
),
3435
3446
(
2011
).
9.
A.
Malinenko
,
A.
Jonchère
,
L.
Girard
,
S.
Parrès-Maynadié
,
O.
Diat
, and
P.
Bauduin
,
Langmuir
34
(
5
),
2026
2038
(
2018
).
10.
L.
Lövgren
,
S.
Sjöberg
, and
P. W.
Schindler
,
Geochim. Cosmochim. Acta
54
(
5
),
1301
1306
(
1990
).
11.
C.
Ludwig
and
P. W.
Schindler
,
J. Colloid Interface Sci.
169
(
2
),
284
290
(
1995
).
12.
Y.
Gao
and
A.
Mucci
,
Geochim. Cosmochim. Acta
65
(
14
),
2361
2378
(
2001
).
13.
J.
Lützenkirchen
,
J.-F.
Boily
,
L.
Lövgren
, and
S.
Sjöberg
,
Geochim. Cosmochim. Acta
66
(
19
),
3389
3396
(
2002
).
14.
M.
Borkovec
,
G. J. M.
Koper
, and
C.
Piguet
,
Curr. Opin. Colloid Interface Sci.
11
(
5
),
280
289
(
2006
).
15.
J.
Lützenkirchen
,
T.
Kupcik
,
M.
Fuss
,
C.
Walther
,
A.
Sarpola
, and
O.
Sundman
,
Appl. Surf. Sci.
256
(
17
),
5406
5411
(
2010
).
16.
J. R.
Rustad
,
Geochim. Cosmochim. Acta
69
(
18
),
4397
4410
(
2005
).
17.
J.
Lützenkirchen
,
R.
Marsac
,
W. H.
Casey
,
G.
Furrer
,
T.
Kupcik
, and
P.
Lindqvist-Reis
,
Aquat. Geochem.
21
(
6
),
555
(
2015
).
18.
J.
Lützenkirchen
,
R.
Marsac
,
W. H.
Casey
,
G.
Furrer
,
T.
Kupcik
, and
P.
Lindqvist-Reis
,
Aquat. Geochem.
21
(
2-4
),
81
97
(
2015
).
19.
M.
Sulpizi
and
M.
Sprik
,
Phys. Chem. Chem. Phys.
10
(
34
),
5238
5249
(
2008
).
20.
J.
Cheng
,
M.
Sulpizi
, and
M.
Sprik
,
J. Chem. Phys.
131
(
15
),
154504
(
2009
).
21.
S.
Marialore
and
S.
Michiel
,
J. Phys.: Condens. Matter
22
(
28
),
284116
(
2010
).
22.
F.
Costanzo
,
M.
Sulpizi
,
R. G. D.
Valle
, and
M.
Sprik
,
J. Chem. Phys.
134
(
24
),
244508
(
2011
).
23.
M.
Sulpizi
,
M.-P.
Gaigeot
, and
M.
Sprik
,
J. Chem. Theory Comput.
8
(
3
),
1037
1047
(
2012
).
24.
M. P.
Gaigeot
,
M.
Sprik
, and
M.
Sulpizi
,
J. Phys.: Condens. Matter
24
(
12
),
124106
(
2012
).
25.
S.
Tazi
,
B.
Rotenberg
,
M.
Salanne
,
M.
Sprik
, and
M.
Sulpizi
,
Geochim. Cosmochim. Acta
94
,
1
11
(
2012
).
26.
S. V.
Churakov
,
C.
Labbez
,
L.
Pegado
, and
M.
Sulpizi
,
J. Phys. Chem. C
118
(
22
),
11752
11762
(
2014
).
27.
C.
Álvaro
,
T.
Frederik
,
S.
Marialore
,
G.
Marie-Pierre
, and
C.
Dominique
,
J. Phys.: Condens. Matter
26
(
24
),
244106
(
2014
).
28.
M.
Pfeiffer-Laplaud
,
D.
Costa
,
F.
Tielens
,
M.-P.
Gaigeot
, and
M.
Sulpizi
,
J. Phys. Chem. C
119
(
49
),
27354
27362
(
2015
).
29.
M.
Pfeiffer-Laplaud
,
M.-P.
Gaigeot
, and
M.
Sulpizi
,
J. Phys. Chem. Lett.
7
(
16
),
3229
3234
(
2016
).
30.
T.
Hiemstra
,
J. C. M.
De Wit
, and
W. H.
Van Riemsdijk
,
J. Colloid Interface Sci.
133
(
1
),
91
(
1989
).
31.
T.
Hiemstra
,
P.
Venema
, and
W. H.
Van Riemsdijk
,
J. Colloid Interface Sci.
184
(
2
),
680
(
1996
).
32.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
,
Comput. Phys. Commun.
167
(
2
),
103
128
(
2005
).
33.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
(
2
),
785
789
(
1988
).
34.
A. D.
Becke
,
Phys. Rev. A
38
(
6
),
3098
3100
(
1988
).
35.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
,
Phys. Rev. B
54
(
3
),
1703
1710
(
1996
).
36.
J. C.
Westall
, FITEQL: A Computer Program for Determination of Chemical Equilibrium Constants from Experimental Data, Version 2.0. Report 82-02,
Department of Chemistry, Oregon State University, Corvallis
,
1982
.
37.
W. O. N.
Parker
,
R.
Millini
, and
I.
Kiricsi
,
Inorg. Chem.
36
(
4
),
571
575
(
1997
).
38.
H.
Ohshima
, in
Interface Science and Technology
, edited by
J.
Lützenkirchen
(
Elsevier
,
2006
), Vol. 11, pp.
67
87
.
39.
J.
Lutzenkirchen
,
F.
Heberling
,
F.
Supljika
,
T.
Preocanin
,
N.
Kallay
,
F.
Johann
,
L.
Weisser
, and
P. J.
Eng
,
Faraday Discuss.
180
,
55
79
(
2015
).
40.
J.
Lützenkirchen
,
R.
Zimmermann
,
T.
Preočanin
,
A.
Filby
,
T.
Kupcik
,
D.
Küttner
,
A.
Abdelmonem
,
D.
Schild
,
T.
Rabung
,
M.
Plaschke
,
F.
Brandenstein
,
C.
Werner
, and
H.
Geckeis
,
Adv. Colloid Interface Sci.
157
(
1
),
61
74
(
2010
).
41.
J.
Lützenkirchen
,
G. V.
Franks
,
M.
Plaschke
,
R.
Zimmermann
,
F.
Heberling
,
A.
Abdelmonem
,
G. K.
Darbha
,
D.
Schild
,
A.
Filby
,
P.
Eng
,
J. G.
Catalano
,
J.
Rosenqvist
,
T.
Preocanin
,
T.
Aytug
,
D.
Zhang
,
Y.
Gan
, and
B.
Braunschweig
,
Adv. Colloid Interface Sci.
251
,
1
25
(
2018
).
42.
K. W.
Corum
and
S. E.
Mason
,
Water Res.
102
,
413
420
(
2016
).
43.
E.
Laiti
,
L.-O.
Öhman
,
J.
Nordin
, and
S.
Sjöberg
,
J. Colloid Interface Sci.
175
(
1
),
230
238
(
1995
).
44.
J.
Westall
and
H.
Hohl
,
Adv. Colloid Interface Sci.
12
(
4
),
265
(
1980
).
45.
Z.
Abbas
,
C.
Labbez
,
S.
Nordholm
, and
E.
Ahlberg
,
J. Phys. Chem. C
112
(
15
),
5715
5723
(
2008
).
46.
C. F.
Baes
and
R. E.
Mesmer
,
The Hydrolysis of Cations
(
Wiley
,
1976
).
47.
P. L.
Brown
and
C.
Ekberg
,
Hydrolysis of Metal Ions
(
Wiley
,
2016
).
48.
A. G.
Stack
,
J. R.
Rustad
, and
W. H.
Casey
,
J. Phys. Chem. B
109
(
50
),
23771
23775
(
2005
).
49.
J. P.
Fitts
,
M. L.
Machesky
,
D. J.
Wesolowski
,
X. M.
Shang
,
J. D.
Kubicki
,
G. W.
Flynn
,
T. F.
Heinz
, and
K. B.
Eisenthal
,
Chem. Phys. Lett.
411
(
4-6
),
399
403
(
2005
).
50.
G.
Johansson
,
Acta Chem. Scand.
14
(
3
),
771
773
(
1960
).
51.
G.
Johansson
,
G.
Lundgren
,
L. G.
Sillen
, and
R.
Soderquist
,
Acta Chem. Scand.
14
(
3
),
769
771
(
1960
).
52.
H.
Görz
,
S.
Schönherr
, and
F.
Pertlik
,
Monatsh. Chem. Chem. Mon.
122
(
10
),
759
764
(
1991
).

Supplementary Material

You do not currently have access to this content.