We present a molecular-level simulation study of CaCl2 in water and crystalline hydrates formed by CaCl2 at ambient (298.15 K, 1 bar) conditions and at a high-temperature high-pressure state (365 K, 275 bars) typical of hydraulic fracturing conditions in natural-gas extraction, at which experimental properties are poorly characterized. We focus on simulations of chemical potentials in both solution and crystalline phases and on the salt solubility, the first time to our knowledge that such properties have been investigated by molecular simulation for divalent aqueous electrolytes. We first extend our osmotic ensemble Monte Carlo simulation technique [F. Moučka et al., J. Phys. Chem. B 115, 7849–7861 (2011)] to such solutions. We then describe and apply new methodology for the simulation of the chemical potentials of the experimentally observed crystalline hydrates at ambient conditions (antarcticite, CaCl2·6H2O) and at high-temperature conditions (sinjarite, CaCl2·2H2O). We implement our methodologies using for both phases the CaCl2 transferable force field (FF) based on simple point charge-extended water developed by Mamatkulov et al. [J. Chem. Phys. 138, 024505 (2013)], based on training sets involving single-ion and ion-pair low-concentration solution properties at near-ambient conditions. We find that simulations of the solution chemical potentials at high concentrations are somewhat problematic, exhibiting densities diverging from experimental values and accompanied by dramatically decreasing particle mobility. For the solid phases, the sinjarite crystalline lattice differs from experiment only slightly, whereas the simulations of antarcticite completely fail, due to instability of the crystalline lattice. The FF thus only successfully yields the sinjarite solubility, but its value m = 8.0(7) mol kg−1H2O lies well below the experimentally observed solubility range at 1 bar pressure of (12m, 15m) in the temperature interval (320 K, 400 K). We conclude that the used FF does not provide a good description of the experimental properties considered and suggest that improvement must take into account the crystalline properties.

1.
L. L.
Lee
,
Molecular Thermodynamics of Electrolyte Solutions
(
World Scientific Publishing
,
Singapore
,
2008
).
2.
A.
Ben-Naim
,
Molecular Theory of Solutions
(
Oxford University Press
,
New York
,
2006
).
3.
F.
Moučka
,
D.
Bratko
, and
A.
Luzar
,
J. Chem. Phys.
142
,
124705
(
2015
).
4.
F.
Moučka
,
D.
Bratko
, and
A.
Luzar
,
J. Phys. Chem. C
119
,
20416
(
2015
).
5.
F.
Moučka
,
M.
Svoboda
, and
M.
Lísal
,
Phys. Chem. Chem. Phys.
19
,
16586
(
2017
).
6.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon Press
,
Oxford
,
1987
).
7.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
, 2nd ed. (
Academic Press
,
San Diego
,
2002
).
8.
I.
Nezbeda
,
F.
Moučka
, and
W. R.
Smith
,
Mol. Phys.
114
,
1665
(
2016
).
9.
D. N.
Theodorou
,
Ind. Eng. Chem. Res.
49
,
3047
(
2010
).
10.
E. J.
Maginn
and
J. R.
Elliott
,
Ind. Eng. Chem. Res.
49
,
3059
(
2010
).
11.
A.
Leach
,
Molecular Modelling
(
Pearson
,
Harlow, England
,
1996
).
12.
B.
Widom
,
J. Chem. Phys.
39
,
2808
(
1963
).
13.
E.
Sanz
and
C.
Vega
,
J. Chem. Phys.
126
,
014507
(
2007
).
14.
J. L.
Aragones
,
E.
Sanz
, and
C.
Vega
,
J. Chem. Phys.
136
,
244508
(
2012
).
15.
F.
Moučka
,
M.
Lísal
,
J.
Škvor
,
J.
Jirsák
,
I.
Nezbeda
, and
W. R.
Smith
,
J. Phys. Chem. B
115
,
7849
7861
(
2011
).
16.
A. S.
Paluch
,
S.
Jayaraman
,
J. K.
Shah
, and
E. J.
Maginn
,
J. Chem. Phys.
133
,
124504
(
2010
).
17.
A. S.
Paluch
,
S.
Jayaraman
,
J. K.
Shah
, and
E. J.
Maginn
,
J. Chem. Phys.
137
,
039901
(
2012
).
18.
F.
Moučka
,
I.
Nezbeda
, and
W. R.
Smith
,
J. Chem. Theory Comput.
9
,
5076
(
2013
).
19.
M.
Lísal
,
W. R.
Smith
, and
J.
Kolafa
,
J. Phys. Chem. B
109
,
12956
(
2005
).
20.
Z.
Mester
and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
142
,
044507
(
2015
).
21.
Z.
Mester
and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
143
,
044505
(
2015
).
22.
K. G.
Denbigh
,
The Principles of Chemical Equilibrium
, 4th ed. (
Cambridge University Press
,
Cambridge, UK
,
1981
).
23.
M.
Ferrario
,
G.
Ciccotti
,
E.
Spohr
,
T.
Cartailler
, and
P.
Turq
,
J. Chem. Phys.
117
,
4947
(
2002
).
24.
A. L.
Benavides
,
J. L.
Aragones
, and
C.
Vega
,
J. Chem. Phys.
144
,
124504
(
2016
).
25.
H. M.
Manzanilla-Granados
,
H.
Saint-Martin
,
R.
Fuentes-Azcatl
, and
J.
Alejandre
,
J. Phys. Chem. B
119
,
8389
(
2015
).
26.
J.
Kolafa
,
J. Chem. Phys.
145
,
204509
(
2016
).
27.
J. R.
Espinosa
,
J. M.
Young
,
H.
Jiang
,
D.
Gupta
,
C.
Vega
,
E.
Sanz
,
P. G.
Debenedetti
, and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
145
,
154111
(
2016
).
28.
F.
Moučka
,
M.
Lísal
, and
W. R.
Smith
,
J. Phys. Chem. B
116
,
5468
(
2012
).
29.
F.
Moučka
,
I.
Nezbeda
, and
W. R.
Smith
,
J. Chem. Phys.
138
,
154102
(
2013
).
30.
W. R.
Smith
,
I.
Nezbeda
,
J.
Kolafa
, and
F.
Moučka
,
Fluid Phase Equilib.
466
,
19
(
2018
).
31.
J. W.
Anthony
,
R. A.
Bideaux
,
K. W.
Bladh
, and
M. C.
Nichols
,
Handbook of Mineralogy
(
Metallurgical Society of America
,
Chantilly, VA, USA
,
2003
).
32.
D.
Li
,
D.
Zeng
,
X.
Yin
,
H.
Han
,
L.
Guo
, and
Y.
Yao
,
Calphad
53
,
78
(
2016
).
33.
L.
Michalec
and
M.
Lísal
,
Mol. Phys.
115
,
1086
(
2016
).
34.
S.
Mamatkulov
,
M.
Fyta
, and
R. R.
Netz
,
J. Chem. Phys.
138
,
024505
(
2013
).
35.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem. A
91
,
6269
(
1987
).
36.
L. X.
Dang
and
D. E.
Smith
,
J. Chem. Phys.
99
,
6950
(
1993
).
37.
C. S.
Babu
and
C.
Lim
,
J. Phys. Chem. A
110
,
691
(
2006
).
38.
M.
Kohagen
,
P. E.
Mason
, and
P.
Jungwirth
,
J. Phys. Chem. B
118
,
7902
(
2014
).
39.
A.
Saxena
and
A. E.
Garcia
,
J. Phys. Chem. B
119
,
219
(
2015
).
40.
R.
Elfgen
,
M.
Hülsmann
,
A.
Krämer
,
T.
Köddermann
,
K. N.
Kirschner
, and
D.
Reith
,
Eur. Phys. J.: Spec. Top.
225
,
1391
(
2016
).
41.
R. A.
Robinson
and
R. H.
Stokes
,
Electrolyte Solutions
(
Dover Publications
,
New York
,
2002
).
42.
B. R.
Staples
and
R. L.
Nuttall
,
J. Phys. Chem. Ref. Data
6
,
385
(
1977
).
43.
W. J.
Hamer
and
Y.-C.
Wu
,
J. Phys. Chem. Ref. Data
1
,
1047
(
1972
).
44.
F.
Moučka
,
I.
Nezbeda
, and
W. R.
Smith
,
J. Chem. Phys.
139
,
124505
(
2013
).
45.
K. S.
Pitzer
and
Y.
Shi
,
J. Solution Chem.
22
,
99
(
1993
).
46.
M. W.
Chase
, Jr.
,
NIST-JANAF Thermochemical Tables
, Journal of Physical and Chemical Reference Data, Monograph No. 9. (
National Institute of Standards and Technology
,
1998
).
47.
D.
Lide
,
CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data
(
CRC Press
,
Boca Raton, Florida
,
2003
).
48.
M.
Frenkel
,
K. N.
Marsh
,
R. C.
Wilhoit
,
G. J.
Kabo
, and
G. N.
Roganov
,
Thermodynamics of Organic Compounds in the Gas State
(
Thermodynamic Research Center
,
College Station, TX
,
1994
).
49.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Pall
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
,
SoftwareX
1-2
,
19
(
2015
).
50.
S. G.
Moustafa
,
A. J.
Schultz
, and
D. A.
Kofke
,
J. Chem. Theory Comput.
13
,
825
(
2017
).
51.
See http://old.vscht.cz/fch/software/macsimus/ for “Macsimus”; accessed 23 March 2018.
52.
J.
Kolafa
, “
Free energy of crystals: Harmonic reference with rigid molecules
,”
J. Chem. Theory Comput.
(unpublished).
53.
P.
Atkins
and
J.
de Paula
,
Atkins’ Physical Chemistry
(
OUP
,
Oxford
,
2010
).
54.
J.
Kolafa
and
J. W.
Perram
,
Mol. Simul.
9
,
351
(
1992
).
55.
J.
Kolafa
and
M.
Lísal
,
J. Chem. Theory Comput.
7
,
3596
(
2011
).
56.
G.
Martyna
,
M. E.
Tuckerman
,
D. J.
Tobias
, and
M. L.
Klein
,
Mol. Phys.
87
,
1117
(
1996
).
57.
J.
Kolafa
and
L.
Viererblová
,
J. Chem. Theory Comput.
10
,
1468
(
2014
).
58.
See http://www.crystallography.net for “Crystallography open database”; accessed 5 January 2018.
59.
A.
Leclaire
and
M. M.
Borel
,
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
33
,
1608
(
1977
).
60.
A.
Leclaire
and
M. M.
Borel
,
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
33
,
2938
(
1977
).
61.
I.
Abdulagatov
and
N.
Azizov
,
Fluid Phase Equilib.
240
,
204
(
2006
).
62.
S.
Al Ghafri
,
G. C.
Maitland
, and
J. P. M.
Trusler
,
J. Chem. Eng. Data
57
,
1288
(
2012
).
You do not currently have access to this content.