The activity and function of many macromolecules in cellular environments are coupled with the binding of divalent ions such as calcium or magnesium. In principle, computer simulations can be used to understand the molecular level aspects of how many important macromolecules interact with ions. However, most of the force fields currently available often fail to accurately reproduce the properties of divalent ions in aqueous environments. Here we develop classical non-polarizable force fields for the aqueous alkaline earth metal halides (MX2), where M = Mg2+, Ca2+, Sr2+, Ba2+ and X = Cl, Br, I, which can be used in bimolecular simulations and which are compatible with the Simple Point Charge/Extended (SPC/E) water model. The force field parameters are specifically developed to reproduce the experimental Kirkwood-Buff integrals for aqueous solutions and thereby the experimental activity derivatives, partial molar volumes, and excess coordination numbers. This ensures that a reasonable balance between ion-ion, ion-water, and water-water distributions is obtained. However, this requires a scaling of the cation to water oxygen interaction strength in order to accurately reproduce the integrals. The scaling factors developed for chloride salts are successfully transferable to the bromide and iodide salts. Use of these new models leads to reasonable diffusion constants and dielectric decrements. However, the performance of the models decreases with increasing salt concentration (>4m), and simulations of the pure crystals exhibited unstable behavior.

1.
J. J. R.
Frausto da Silva
and
R. J. P.
William
,
The Biological Chemistry of the Elements: The Inorganic Chemistry of Life
, 2nd ed. (
Oxford University Press
,
1991
).
2.
Y.
Jiang
,
A.
Lee
,
J.
Chen
,
V.
Ruta
,
M.
Cadene
,
B. T.
Chait
, and
R.
MacKinnon
,
Nature
423
,
33
41
(
2003
).
3.
S. X.
Wang
,
E.
Hur
,
C. A.
Sousa
,
L.
Brinen
,
E. J.
Slivka
, and
R. J.
Fletterick
,
Biochemistry
42
(
26
),
7959
7966
(
2003
).
4.
T.
Dudev
and
C.
Lim
,
J. Am. Chem. Soc.
135
,
17200
17208
(
2013
).
5.
J. A.
Cowan
,
Chem. Rev.
98
,
1067
1088
(
1998
).
6.
I.
Leontyev
and
A.
Stuchebrukhov
,
Phys. Chem. Chem. Phys.
13
(
7
),
2613
(
2011
).
7.
T.
Ichiye
,
Advances in Chemical Physics
(
John Wiley & Sons, Inc.
,
2014
), pp.
161
200
.
8.
S.
Weerasinghe
and
P. E.
Smith
,
J. Chem. Phys.
119
,
11342
(
2003
).
9.
M. B.
Gee
,
N. R.
Cox
,
Y.
Jiao
,
N.
Bentenitis
,
S.
Weerasinghe
, and
P. E.
Smith
,
J. Chem. Theory Comput.
7
(
5
),
1369
1380
(
2011
).
10.
J.
Šponer
,
M.
Otyepka
,
P.
Banáš
,
K.
Réblová
, and
N. G.
Walter
,
Innovations in Biomolecular Modeling and Simulations
(
Royal Society of Chemistry
,
2012
), Vol. 2, pp.
129
155
.
11.
H. I.
Okur
,
J.
Hladílková
,
K. B.
Rembert
,
Y.
Cho
,
J.
Heyda
,
J.
Dzubiella
,
P. S.
Cremer
, and
P.
Jungwirth
,
J. Phys. Chem. B
121
(
9
),
1997
2014
(
2017
).
12.
A.
Kubíčková
,
T.
Křížek
,
P.
Coufal
,
M.
Vazdar
,
E.
Wernersson
,
J.
Heyda
, and
P.
Jungwirth
,
Phys. Rev. Lett.
108
(
18
),
186101
(
2012
).
13.
H.
Yu
,
T. W.
Whitfield
,
E.
Harder
,
G.
Lamoureux
,
I.
Vorobyov
,
V. M.
Anisimov
,
A. D.
MacKerell
, and
B.
Roux
,
J. Chem. Theory Comput.
6
(
3
),
774
786
(
2010
).
14.
J.
Huang
,
P. E. M.
Lopes
,
B.
Roux
, and
A. D.
MacKerell
,
J. Phys. Chem. Lett.
5
(
18
),
3144
3150
(
2014
).
15.
I. V.
Leontyev
and
A. A.
Stuchebrukhov
,
J. Chem. Theory Comput.
8
,
3207
3216
(
2012
).
16.
I. V.
Leontyev
and
A. A.
Stuchebrukhov
,
J. Chem. Phys.
141
,
014103
(
2014
).
17.
I. V.
Leontyev
and
A. A.
Stuchebrukhov
,
J. Chem. Phys.
130
,
085102
(
2009
).
18.
Y.
Luo
and
B.
Roux
,
J. Phys. Chem. Lett.
1
(
1
),
183
189
(
2010
).
19.
Y.
Hashem
,
E.
Westhof
, and
P.
Auffinger
,
Computational Structural Biology
(
World Scientific
,
2008
), pp.
363
399
.
20.
H.
Ohtaki
,
Monatsh. Chem.
132
(
11
),
1237
1268
(
2002
).
21.
S.
Kirmizialtin
and
R.
Elber
,
J. Phys. Chem. B
114
,
8207
8220
(
2010
).
22.
W. D.
Cornell
,
P.
Cieplak
,
C. I.
Bayly
,
I. R.
Gould
,
K. M.
Merz
,
D. M.
Ferguson
,
D. C.
Spellmeyer
,
T.
Fox
,
J. W.
Caldwell
, and
P. A.
Kollman
,
J. Am. Chem. Soc.
117
,
5179
5197
(
1995
).
23.
B. R.
Brooks
,
R. E.
Bruccoleri
,
B. D.
Olafson
,
D. J.
States
,
S.
Swaminathan
, and
M.
Karplus
,
J. Comput. Chem.
4
,
187
217
(
1983
).
24.
J.
Yoo
and
A.
Aksimentiev
,
J. Phys. Chem. Lett.
3
,
45
50
(
2012
).
25.
P.
Auffinger
,
RNA 3D Structure Analysis and Prediction
(
Springer Berlin Heidelberg
,
2012
), Vol. 27, pp.
299
318
.
26.
P.
Auffinger
,
N.
Grover
, and
E.
Westhof
,
Structural and Catalytic Roles of Metal Ions in RNA
(
The Royal Society of Chemistry
,
2011
), Vol. 9, pp.
1
36
.
27.
J.
Yoo
,
J.
Wilson
, and
A.
Aksimentiev
,
Biopolymers
105
,
752
763
(
2016
).
28.
D. C.
Rau
,
B.
Lee
, and
V. A.
Parsegian
,
Proc. Natl. Acad. Sci. U. S. A.
81
(
9
),
2621
2625
(
1984
).
29.
A. A.
Kornyshev
and
S.
Leikin
,
Phys. Rev. Lett.
82
(
20
),
4138
4141
(
1999
).
30.
E.
Raspaud
,
M.
Olvera de la Cruz
,
J. L.
Sikorav
, and
F.
Livolant
,
Biophys. J.
74
(
1
),
381
393
(
1998
).
31.
Y.
Jiang
,
H.
Zhang
,
W.
Feng
, and
T.
Tan
,
J. Chem. Inf. Model.
55
(
12
),
2575
2586
(
2015
).
32.
A.
Saxena
and
D.
Sept
,
J. Chem. Theory Comput.
9
,
3538
3542
(
2013
).
33.
A.
Saxena
and
A. E.
García
,
J. Phys. Chem. B
119
,
219
227
(
2015
).
34.
J.
Åqvist
,
J. Phys. Chem.
94
,
8021
8024
(
1990
).
35.
S.
Marchand
and
B.
Roux
,
Proteins: Struct., Funct., Genet.
33
,
265
284
(
1998
).
36.
C. S.
Babu
and
C.
Lim
,
J. Phys. Chem. A
110
,
691
699
(
2006
).
37.
S.
Mamatkulov
,
M.
Fyta
, and
R. R.
Netz
,
J. Chem. Phys.
138
,
024505
(
2013
).
38.
W. F.
Van Gunsteren
and
H. J. C.
Berendsen
,
Groningen Molecular Simulation (GROMOS) Library Manual
(
BIOMOS
,
Groningen, The Netherlands
,
1987
), pp.
1
221
.
39.
J. G.
Kirkwood
and
F. P.
Buff
,
J. Chem. Phys.
19
,
774
(
1951
).
40.
A.
Ben-Naim
,
J. Chem. Phys.
67
,
4884
(
1977
).
41.
P. G.
Kusalik
and
G. N.
Patey
,
J. Chem. Phys.
86
(
9
),
5110
5116
(
1987
).
42.
P. E.
Smith
,
J. Chem. Phys.
129
,
124509
(
2008
).
43.
O.
Söhnel
and
P.
Novotný
,
Densities of Aqueous Solutions of Inorganic Substances
(
Elsevier
,
Amsterdam
,
1985
).
44.
V. M. M.
Lobo
and
J. L.
Quaresma
,
Handbook of Electrolyte Solutions
(
Elsevier
,
1989
).
45.
K. S.
Pitzer
,
J. Phys. Chem.
77
,
268
277
(
1973
).
46.
K. S.
Pitzer
,
P.
Wang
,
J. A.
Rard
, and
S. L.
Clegg
,
J. Solution Chem.
28
,
265
282
(
1999
).
47.
F.
Deyhimi
and
M.
Abedi
,
J. Chem. Eng. Data
57
(
2
),
324
329
(
2012
).
48.
R. A.
Fine
and
F. J.
Millero
,
J. Chem. Phys.
59
(
10
),
5529
5536
(
1973
).
49.
S.
Weerasinghe
and
P. E.
Smith
,
J. Phys. Chem. B
107
,
3891
3898
(
2003
).
50.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
6271
(
1987
).
51.
Y.
Marcus
,
Chem. Rev.
88
,
1475
1498
(
1988
).
52.
S.
Gražulis
,
D.
Chateigner
,
R. T.
Downs
,
A. F. T.
Yokochi
,
M.
Quirós
,
L.
Lutterotti
,
E.
Manakova
,
J.
Butkus
,
P.
Moeck
, and
A.
Le Bail
,
J. Appl. Crystallogr.
42
,
726
729
(
2009
).
53.
H. J. C.
Berendsen
,
D.
van der Spoel
, and
R.
van Drunen
,
Comput. Phys. Commun.
91
,
43
56
(
1995
).
54.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
55.
S.
Miyamoto
and
P. A.
Kollman
,
J. Comput. Chem.
13
(
8
),
952
962
(
1992
).
56.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
(
12
),
10089
10092
(
1993
).
57.
P. E.
Smith
,
E.
Matteoli
, and
J. P.
O’Connell
,
Fluctuation Theory of Solutions: Applications in Chemistry, Chemical Engineering and Biophysics
(
CRC Press
,
Boca Raton
,
2013
).
58.
S.
Chandrasekhar
,
Rev. Mod. Phys.
15
(
1
),
1
89
(
1943
).
59.
R.
Chitra
and
P. E.
Smith
,
J. Phys. Chem. B
104
(
24
),
5854
5864
(
2000
).
60.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
USA
,
1987
).
61.
P. E.
Smith
and
W. F. v.
Gunsteren
,
J. Chem. Phys.
100
(
1
),
577
585
(
1994
).
62.
R. W.
Impey
,
P. A.
Madden
, and
I. R.
McDonald
,
J. Phys. Chem.
87
(
25
),
5071
5083
(
1983
).
63.
M.
Kang
and
P. E.
Smith
,
J. Comput. Chem.
27
(
13
),
1477
1485
(
2006
).
64.
K.
Han
,
R. M.
Venable
,
A.-M.
Bryant
,
C. J.
Legacy
,
R.
Shen
,
H.
Li
,
B.
Roux
,
A.
Gericke
, and
R. W.
Pastor
,
J. Phys. Chem. B
122
,
1484
1494
(
2018
).
65.
J.
Wang
,
P.
Cieplak
, and
P. A.
Kollman
,
J. Comput. Chem.
21
(
12
),
1049
1074
(
2000
).
66.
P.
Bjelkmar
,
P.
Larsson
,
M. A.
Cuendet
,
B.
Hess
, and
E.
Lindahl
,
J. Chem. Theory Comput.
6
(
2
),
459
466
(
2010
).
67.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
118
(
45
),
11225
11236
(
1996
).
68.
K. M.
Callahan
,
N. N.
Casillas-Ituarte
,
M.
Roeselová
,
H. C.
Allen
, and
D. J.
Tobias
,
J. Phys. Chem. A
114
(
15
),
5141
5148
(
2010
).
69.
R.
Caminiti
,
G.
Licheri
,
G.
Piccaluga
, and
G.
Pinna
,
Chem. Phys. Lett.
47
,
275
278
(
1977
).
70.
H.
Ohtaki
and
T.
Radnai
,
Chem. Rev.
93
,
1157
1204
(
1993
).
71.
J. P.
Piquemal
,
L.
Perera
,
G. A.
Cisneros
,
P.
Ren
,
L. G.
Pedersen
, and
T. A.
Darden
,
J. Chem. Phys.
125
,
054511
(
2006
).
72.
D.
Jiao
,
C.
King
,
A.
Grossfield
,
T. A.
Darden
, and
P.
Ren
,
J. Phys. Chem. B
110
,
18553
18559
(
2006
).
73.
J. P.
Larentzos
and
L. J.
Criscenti
,
J. Phys. Chem. B
112
,
14243
14250
(
2008
).
74.
R.
Caminiti
,
P.
Cucca
,
M.
Monduzzi
,
G.
Saba
, and
G.
Crisponi
,
J. Chem. Phys.
81
(
1
),
543
551
(
1984
).
75.
F.
Jalilehvand
,
D.
Spångberg
,
P.
Lindqvist-Reis
,
K.
Hermansson
,
I.
Persson
, and
M.
Sandström
,
J. Am. Chem. Soc.
123
,
431
441
(
2001
).
76.
Y. S.
Badyal
,
A. C.
Barnes
,
G. J.
Cuello
, and
J. M.
Simonson
,
J. Phys. Chem. A
108
,
11819
11827
(
2004
).
77.
J. L.
Fulton
,
S. M.
Heald
,
Y. S.
Badyal
, and
J. M.
Simonson
,
J. Phys. Chem. A
107
,
4688
4696
(
2003
).
78.
V.-T.
Pham
and
J. L.
Fulton
,
J. Chem. Phys.
138
,
044201
(
2013
).
79.
G. W.
Neilson
and
R. D.
Broadbent
,
Chem. Phys. Lett.
167
,
429
431
(
1990
).
80.
L. X.
Dang
,
G. K.
Schenter
, and
J. L.
Fulton
,
J. Phys. Chem. B
107
,
14119
14123
(
2003
).
81.
S.
Ramos
,
G. W.
Neilson
,
A. C.
Barnes
and
M. J.
Capitán
,
J. Chem. Phys.
118
,
5542
(
2003
).
82.
P.
D’Angelo
,
V.
Migliorati
,
F.
Sessa
,
G.
Mancini
, and
I.
Persson
,
J. Phys. Chem. B
120
,
4114
4124
(
2016
).
83.
G.
Perron
,
A.
Roux
, and
J. E.
Desnoyers
,
Can. J. Chem.
59
(
21
),
3049
3054
(
1981
).
84.
S.
Obst
and
H.
Bradaczek
,
J. Phys. Chem.
100
,
15677
15687
(
1996
).
85.
S.
Koneshan
,
J. C.
Rasaiah
,
R. M.
Lynden-Bell
, and
S. H.
Lee
,
J. Phys. Chem. B
102
,
4193
4204
(
1998
).
86.
R. R.
Mills
and
V. M. M.
Lobo
,
Self-Diffusion in Electrolyte Solutions: A Critical Examination of Data Compiled From the Literature
(
Elsevier
,
1989
).
87.
J.
Barthel
,
R.
Buchner
, and
M.
Munsterer
,
Electrolyte Data Collection, Part 2: Dielectric Properties of Water and Aqueous Electrolyte Solutions
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
1996
).
88.
P. E.
Smith
and
W. F.
van Gunsteren
,
J. Chem. Phys.
100
,
3169
(
1994
).
89.
G.
Beggerow
,
Heats of Mixing and Solution/Mischungs- Und Losungswarmen
(
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Berlin
,
Germany
,
1976
).
90.
A.
Bleuzen
,
P.-A.
Pittet
,
L.
Helm
, and
A. E.
Merbach
,
Magn. Reson. Chem.
35
(
11
),
765
773
(
1997
).
91.
L.
Helm
and
A. E.
Merbach
,
Chem. Rev.
105
(
6
),
1923
1960
(
2005
).
92.
M.
Li
,
Z.
Duan
,
Z.
Zhang
,
C.
Zhang
, and
J.
Weare
,
Mol. Phys.
106
(
24
),
2685
2697
(
2008
).
93.
D.
Di Tommaso
,
E.
Ruiz-Agudo
,
N. H.
de Leeuw
,
A.
Putnis
, and
C. V.
Putnis
,
Phys. Chem. Chem. Phys.
16
(
17
),
7772
7785
(
2014
).
94.
A. Y.
Mehandzhiyski
,
E.
Riccardi
,
T. S.
van Erp
,
T. T.
Trinh
, and
B. A.
Grimes
,
J. Phys. Chem. B
119
(
33
),
10710
10719
(
2015
).

Supplementary Material

You do not currently have access to this content.