In this work, we use ab initio molecular dynamics simulations to elucidate the electronic properties of three hydrated zwitterionic amino acids, namely proline, hydroxyproline, and alanine, the former two forming an important constituent of collagen. In all three systems, we find a substantial amount of charge transfer between the amino acids and surrounding solvent, which, rather surprisingly, also involves the reorganization of electron density near the hydrophobic non-polar groups. Water around proline appears to be slightly more polarized, as reflected by the enhanced water dipole moment in its hydration shell. This observation is also complemented by an examination of the IR spectra of the three systems where there is a subtle red and blue shift in the O–H stretch and bend regions, respectively, for proline. We show that polarizability of these amino acids as revealed by a dipole moment analysis involves a significant enhancement from the solvent and that this also involves non-polar groups. Our results suggest that quantum mechanical effects are likely to be important in understanding the coupling between biomolecules and water in general and in hydrophobic interactions.

1.
D.
Laage
,
T.
Elsaesser
, and
J. T.
Hynes
,
Chem. Rev.
117
,
10694
(
2017
).
2.
M.-C.
Bellissent-Funel
,
A.
Hassanali
,
M.
Havenith
,
R.
Henchman
,
P.
Pohl
,
F.
Sterpone
,
D.
van der Spoel
,
Y.
Xu
, and
A. E.
Garcia
,
Chem. Rev.
116
,
7673
(
2016
).
3.
P.
Ball
,
Chem. Rev.
108
,
74
(
2008
).
4.
B.
Breiten
,
M. R.
Lockett
,
W.
Sherman
,
S.
Fujita
,
M.
Al-Sayah
,
H.
Lange
,
C. M.
Bowers
,
A.
Heroux
,
G.
Krilov
, and
G. M.
Whitesides
,
J. Am. Chem. Soc.
135
,
15579
(
2013
).
5.
M.
Ahmad
,
W.
Gu
,
T.
Geyer
, and
V.
Helms
,
Nat. Commun.
2
,
261
(
2011
).
6.
P. R.
ten Wolde
and
D.
Chandler
,
Proc. Natl. Acad. Sci. U. S. A.
99
,
6539
(
2002
).
7.
P.
Liu
,
X.
Huang
,
R.
Zhou
, and
B. J.
Berne
,
Nature
437
,
159
(
2005
).
8.
G. C.
Sosso
,
S.
Caravati
,
G.
Rotskoff
,
S.
Vaikuntanathan
, and
A.
Hassanali
,
J. Phys. Chem. A
121
,
370
(
2017
).
9.
K. A.
Beauchamp
,
Y.-S.
Lin
,
R.
Das
, and
V. S.
Pande
,
J. Chem. Theory Comput.
8
,
1409
(
2012
).
10.
P. E.
Lopes
,
O.
Guvench
, and
A. D.
MacKerell
,
Methods Mol. Biol.
1215
,
47
(
2015
).
11.
G.
Nadig
,
L. C.
Van Zant
,
S. L.
Dixon
, and
K. M.
Merz
, “
Charge transfer interactions in biology: A new view of the protein-water interface
,” in
Transition State Modeling for Catalysis
(
American Chemical Society
,
1999
), Chap. 34, pp.
439
447
.
12.
V. M.
Anisimov
,
V. L.
Bugaenko
, and
C. N.
Cavasotto
,
ChemPhysChem
10
,
3194
(
2009
).
13.
I. S.
Ufimtsev
,
N.
Luehr
, and
T. J.
Martinez
,
J. Phys. Chem. Lett.
2
,
1789
(
2011
).
14.
G.
Petsko
and
D.
Ringe
,
Protein Structure and Function
(
New Science Press
,
2004
).
15.
J. P.
Amend
and
H. C.
Helgeson
,
Pure Appl. Chem.
69
,
935
(
1997
).
16.
R.
Lundblad
and
F.
Macdonald
,
Handbook of Biochemistry and Molecular Biology
(
CRC Press
,
2010
).
17.
W. M. e.
Haynes
,
CRC Handbook of Chemistry and Physics
, 94th ed. (
CRC Press
,
Boca Raton, Florida
,
2013
).
18.
The Merck Index
(
The Royal Society of Chemistry
,
2013
).
19.
V.
Pliška
,
M.
Schmidt
, and
J.-L.
Fauchère
,
J. Chromatogr. A
216
,
79
(
1981
).
20.
L. H.
Kapcha
and
P. J.
Rossky
,
J. Mol. Biol.
426
,
484
(
2014
).
21.
G.
Lullo
,
S.
Sweeney
,
J.
Körkkö
,
L.
Ala-Kokko
, and
J. D.
San Antonio
,
J. Biol. Chem.
277
,
4223
(
2002
).
22.
Y.
Wang
,
S.
Von Euw
,
F. M.
Fernandes
,
S.
Cassaignon
,
M.
Selmane
,
G.
Laurent
,
G.
Pehau-Arnaudet
,
C.
Coelho
,
L.
Bonhomme-Coury
,
M.-M.
Giraud-Guille
,
F.
Babonneau
,
T.
Azaïs
, and
N.
Nassif
,
Nat. Mater.
12
,
1144
(
2013
).
23.
F.
Gul-E-Noor
,
C.
Singh
,
A.
Papaioannou
,
N.
Sinha
, and
G. S.
Boutis
,
J. Phys. Chem. C
119
,
21528
(
2015
).
24.
P.
Yancey
,
M.
Clark
,
S.
Hand
,
R.
Bowlus
, and
G.
Somero
,
Science
217
,
1214
(
1982
).
25.
S.
Hayat
,
Q.
Hayat
,
M. N.
Alyemeni
,
A. S.
Wani
,
J.
Pichtel
, and
A.
Ahmad
,
Plant Signaling Behav.
7
,
1456
(
2012
).
26.
V.
Srinivas
and
D.
Balasubramanian
,
Langmuir
11
,
2830
(
1995
).
27.
D.
Samuel
,
T. K. S.
Kumar
,
G.
Jayaraman
,
P. W.
Yang
, and
C.
Yu
,
IUBMB Life
41
,
235
(
1997
).
28.
P.
Ji
and
W.
Feng
,
Ind. Eng. Chem. Res.
47
,
6275
(
2008
).
29.
S.
Busch
,
C. D.
Lorenz
,
J.
Taylor
,
L. C.
Pardo
, and
S. E.
McLain
,
J. Phys. Chem. B
118
,
14267
(
2014
).
30.
S. E.
McLain
,
A. K.
Soper
,
A. E.
Terry
, and
A.
Watts
,
J. Phys. Chem. B
111
,
4568
(
2007
).
31.
M.
Civera
,
M.
Sironi
, and
S. L.
Fornili
,
Chem. Phys. Lett.
415
,
274
(
2005
).
32.
R. Z.
Troitzsch
,
G. J.
Martyna
,
S. E.
McLain
,
A. K.
Soper
, and
J.
Crain
,
J. Phys. Chem. B
111
,
8210
(
2007
).
33.
R. Z.
Troitzsch
,
H.
Vass
,
W. J.
Hossack
,
G. J.
Martyna
, and
J.
Crain
,
J. Phys. Chem. B
112
,
4290
(
2008
).
34.
R. Z.
Troitzsch
,
P. R.
Tulip
,
J.
Crain
, and
G. J.
Martyna
,
Biophys. J.
95
,
5014
(
2008
).
35.
R. A.
DiStasio
, Jr.
,
B.
Santra
,
Z.
Li
,
X.
Wu
, and
R.
Car
,
J. Chem. Phys.
141
,
084502
(
2014
).
36.
D.
Yu
,
M.
Hennig
,
R. A.
Mole
,
J. C.
Li
,
C.
Wheeler
,
T.
Strassle
, and
G. J.
Kearley
,
Phys. Chem. Chem. Phys.
15
,
20555
(
2013
).
37.
S.
Park
,
R. J.
Radmer
,
T. E.
Klein
, and
V. S.
Pande
,
J. Comput. Chem.
26
,
1612
(
2005
).
38.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
,
Comput. Phys. Commun.
167
,
103
(
2005
).
39.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
40.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
41.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
42.
M.
Krack
,
Theor. Chem. Acc.
114
,
145
(
2005
).
43.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
,
J. Chem. Phys.
126
,
014101
(
2007
).
44.
P. E.
Blöchl
,
J. Chem. Phys.
103
,
7422
(
1995
).
45.
A. A.
Hassanali
,
D.
Zhong
, and
S. J.
Singer
,
J. Phys. Chem. B
115
,
3848
(
2011
).
46.
A. A.
Hassanali
,
D.
Zhong
, and
S. J.
Singer
,
J. Phys. Chem. B
115
,
3860
(
2011
).
47.
P.
Gasparotto
,
A. A.
Hassanali
, and
M.
Ceriotti
,
J. Chem. Theory Comput.
12
,
1953
(
2016
).
48.
A.
Dreuw
and
M.
Head-Gordon
,
J. Am. Chem. Soc.
126
,
4007
(
2004
).
49.
Y. A.
Mantz
,
F. L.
Gervasio
,
T.
Laino
, and
M.
Parrinello
,
Phys. Rev. Lett.
99
,
058104
(
2007
).
50.
M.
Guidon
,
J.
Hutter
, and
J.
VandeVondele
,
J. Chem. Theory Comput.
6
,
2348
(
2010
).
51.
N.
Marzari
and
D.
Vanderbilt
,
Phys. Rev. B
56
,
12847
(
1997
).
52.
M.
Dal Peraro
,
S.
Raugei
,
P.
Carloni
, and
M. L.
Klein
,
ChemPhysChem
6
,
1715
(
2005
).
53.
W. H.
Thompson
and
J. T.
Hynes
,
J. Am. Chem. Soc.
122
,
6278
(
2000
).
54.
J.
Thar
,
S.
Zahn
, and
B.
Kirchner
,
J. Phys. Chem. B
112
,
1456
(
2008
).
55.
S. A.
Clough
,
Y.
Beers
,
G. P.
Klein
, and
L. S.
Rothman
,
J. Chem. Phys.
59
,
2254
(
1973
).
56.
J. K.
Gregory
,
D. C.
Clary
,
K.
Liu
,
M. G.
Brown
, and
R. J.
Saykally
,
Science
275
,
814
(
1997
).
57.
S. S.
Xantheas
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
99
,
8774
(
1993
).
58.
R.
McWeeny
and
K. A.
Ohno
,
Proc. R. Soc. A
255
,
367
(
1960
).
59.
E. R.
Batista
,
S. S.
Xantheas
, and
H.
Jónsson
,
J. Chem. Phys.
109
,
4546
(
1998
).
60.
P. L.
Silvestrelli
and
M.
Parrinello
,
Phys. Rev. Lett.
82
,
3308
(
1999
).
61.
P. L.
Silvestrelli
and
M.
Parrinello
,
J. Chem. Phys.
111
,
3572
(
1999
).
62.
R.
Scipioni
,
D. A.
Schmidt
, and
M.
Boero
,
J. Chem. Phys.
130
,
024502
(
2009
).
63.
Y.
Ding
,
A. A.
Hassanali
, and
M.
Parrinello
,
Proc. Natl. Acad. Sci. U. S. A.
111
,
3310
(
2014
).
64.
A. P.
Gaiduk
and
G.
Galli
,
J. Phys. Chem. Lett.
8
,
1496
(
2017
).
65.
M.
Thomas
,
M.
Brehm
,
R.
Fligg
,
P.
Vohringer
, and
B.
Kirchner
,
Phys. Chem. Chem. Phys.
15
,
6608
(
2013
).
66.
X.-Z.
Li
,
B.
Walker
, and
A.
Michaelides
,
Proc. Natl. Acad. Sci. U. S. A.
108
,
6369
(
2011
).
67.
J.
Grdadolnik
,
F.
Merzel
, and
F.
Avbelj
,
Proc. Natl. Acad. Sci. U. S. A.
114
,
322
(
2017
).
68.
M. J. S.
Phipps
,
T.
Fox
,
C. S.
Tautermann
, and
C.-K.
Skylaris
,
J. Chem. Theory Comput.
13
,
1837
(
2017
).
69.
R. Z.
Khaliullin
,
A. T.
Bell
, and
M.
Head-Gordon
,
J. Chem. Phys.
128
,
184112
(
2008
).
70.
P.
Su
and
H.
Li
,
J. Chem. Phys.
131
,
014102
(
2009
).

Supplementary Material

You do not currently have access to this content.