The charge-dependent structure of interfacial water at the n-Ge(100)-aqueous perchlorate interface was studied by controlling the electrode potential. Specifically, a joint attenuated total reflection infrared spectroscopy and electrochemical experiment was used in 0.1M NaClO4 at pH ≈ 1–10. The germanium surface transformation to an H-terminated surface followed the thermodynamic Nernstian pH dependence and was observed throughout the entire pH range. A singular value decomposition-based spectra deconvolution technique coupled to a sigmoidal transition model for the potential dependence of the main components in the spectra shows the surface transformation to be a two-stage process. The first stage was observed together with the first appearance of Ge–H stretching modes in the spectra and is attributed to the formation of a mixed surface termination. This transition was reversible. The second stage occurs at potentials ≈0.1–0.3 V negative of the first one, shows a hysteresis in potential, and is attributed to the formation of a surface with maximum Ge–H coverage. During the surface transformation, the surface becomes hydrophobic, and an effective desolvation layer, a “hydrophobic gap,” developed with a thickness ≈1–3 Å. The largest thickness was observed near neutral pH. Interfacial water IR spectra show a loss of strongly hydrogen-bound water molecules compared to bulk water after the surface transformation, and the appearance of “free,” non-hydrogen bound OH groups, throughout the entire pH range. Near neutral pH at negative electrode potentials, large changes at wavenumbers below 1000 cm−1 were observed. Librational modes of water contribute to the observed changes, indicating large changes in the water structure.

1.
R. W.
Gurney
,
Ionic Processes in Solution
(
McGraw-Hill
,
New York
,
1953
).
2.
K. D.
Collins
and
M. W.
Washabaugh
,
Q. Rev. Biophys.
18
,
323
422
(
1985
).
3.
D. T.
Richens
,
The Chemistry of Aqua Ions: Synthesis, Structure and Reactivity: A Tour Through the Periodic Table of the Elements
(
Wiley
,
New York
,
1997
).
4.
H. S.
Frank
and
M. W.
Evans
,
J. Chem. Phys.
13
,
507
(
1945
).
5.
W.
Blokzijl
and
J. B. F. N.
Engberts
,
Angew. Chem., Int. Ed. Engl.
32
,
1545
(
1993
).
6.
N. T.
Southall
,
K. A.
Dill
, and
A. D. J.
Haymet
,
J. Phys. Chem. B
106
,
521
(
2002
).
7.
M.
Mucha
,
T.
Frigato
,
L. M.
Levering
,
H. C.
Allen
,
D. J.
Tobias
,
L. X.
Dang
, and
P.
Jungwirth
,
J. Phys. Chem. B
109
,
7617
(
2005
).
8.
C.
Lee
,
J. A.
McCammon
, and
P. J.
Rossky
,
J. Chem. Phys.
80
,
4448
(
1984
).
9.
P.
Jungwirth
and
D. J.
Tobias
,
J. Phys. Chem. B
106
,
6361
(
2002
).
10.
T.
Hotta
,
A.
Kimura
, and
M.
Sasai
,
J. Phys. Chem. B
109
,
18600
(
2005
).
11.
T.
Ishiyama
and
A.
Morita
,
J. Phys. Chem. C
111
,
721
(
2007
).
12.
D. B.
Asay
,
M. T.
Dugger
, and
S. H.
Kim
,
Tribol. Lett.
29
,
67
(
2008
).
13.
W.
Stumm
,
Chemistry of the Solid-Water Interface: Processes at the Mineral-Water and Particle-Water Interface in Natural Systems
(
Wiley
,
New York
,
1992
), pp.
157
162
.
14.
Y.-J.
Feng
,
A.
Gago
,
L.
Timperman
, and
N.
Alonso-Vante
,
Electrochim. Acta
56
,
1009
(
2011
).
15.
K. P.
Gong
,
F.
Du
,
Z. H.
Xia
,
M.
Durstock
, and
L. M.
Dai
,
Science
323
,
760
(
2009
).
16.
J. W.
Schultze
and
A. W.
Hassel
, “
Passivity of metals, alloys, and semiconductors
,” in
Encyclopedia of Electrochemistry
, edited by
A.
Bard
,
M.
Stratmann
, and
G.
Frankel
(
Wiley-VCH
,
Weinheim
,
2003
), Vol. 4, pp.
460
490
.
17.
K.
Bohnenkamp
and
H.
Engell
,
Z. Elektrochem.
61
,
1184
(
1957
).
18.
J.-N.
Chazalviel
,
A.
Belaïdi
,
M.
Safi
,
F.
Maroun
,
B.
Erné
, and
F.
Ozanam
,
Electrochim. Acta
45
,
3205
(
2000
).
19.
R.
Memming
and
G.
Neumann
,
J. Electroanal. Chem. Interfacial Electrochem.
21
,
295
(
1969
).
20.
H.
Gerischer
and
W.
Mindt
,
Surf. Sci.
4
,
440
(
1966
).
21.
S.
Nayak
and
A.
Erbe
,
Phys. Chem. Chem. Phys.
18
,
25100
(
2016
).
22.
F.
Maroun
,
F.
Ozanam
, and
J.-N.
Chazalviel
,
J. Phys. Chem. B
103
,
5280
(
1999
).
23.
F. E. G.
Güner
,
J.
Wåhlin
,
M.
Hinge
, and
S.
Kjelstrup
,
Chem. Phys. Lett.
622
,
15
(
2015
).
24.
P.
Fenter
and
S. S.
Lee
,
MRS Bull.
39
,
1056
(
2014
).
25.
M.
Mezger
,
H.
Reichert
,
S.
Schöder
,
J.
Okasinski
,
H.
Schröder
,
H.
Dosch
,
D.
Palms
,
J.
Ralston
, and
V.
Honkimäki
,
Proc. Natl. Acad. Sci. U. S. A.
103
,
18401
(
2006
).
26.
M.
Mezger
,
S.
Schöder
,
H.
Reichert
,
H.
Schröder
,
J.
Okasinski
,
V.
Honkimäki
,
J.
Ralston
,
J.
Bilgram
,
R.
Roth
, and
H.
Dosch
,
J. Chem. Phys.
128
,
244705
(
2008
).
27.
M.
Sovago
,
R. K.
Campen
,
G. W. H.
Wurpel
,
M.
Müller
,
H. J.
Bakker
, and
M.
Bonn
,
Phys. Rev. Lett.
100
,
173901
(
2008
).
28.
C. S.
Tian
and
Y. R.
Shen
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
15148
(
2009
).
29.
O.
Teschke
and
E. F.
de Souza
,
Chem. Phys. Lett.
403
,
95
(
2005
).
30.
O.
Teschke
and
E. F.
de Souza
,
Phys. Chem. Chem. Phys.
7
,
3856
(
2005
).
31.
N.
Kitadai
,
T.
Sawai
,
R.
Tonoue
,
S.
Nakashima
,
M.
Katsura
, and
K.
Fukushi
,
J. Solution Chem.
43
,
1055
(
2014
).
32.
G. E.
Ewing
,
J. Phys. Chem. B
108
,
15953
(
2004
).
33.
Q.
Du
,
E.
Freysz
, and
Y. R.
Shen
,
Science
264
,
826
(
1994
).
34.
T. A.
Weber
and
F. H.
Stillinger
,
J. Phys. Chem.
87
,
4277
(
1983
).
35.
P. A.
Thiel
,
F. M.
Hoffmann
, and
W. H.
Weinberg
,
J. Chem. Phys.
75
,
5556
(
1981
).
36.
B.
Maté
,
A.
Medialdea
,
M. A.
Moreno
,
R.
Escribano
, and
V. J.
Herrero
,
J. Phys. Chem. B
107
,
11098
(
2003
).
37.
M.
Nakamura
,
Y.
Shingaya
, and
M.
Ito
,
Chem. Phys. Lett.
309
,
123
(
1999
).
38.
B. W.
Callen
,
K.
Griffiths
, and
P. R.
Norton
,
Phys. Rev. Lett.
66
,
1634
(
1991
).
39.
W.
Gan
,
D.
Wu
,
Z.
Zhang
,
R. R.
Feng
, and
H. F.
Wang
,
J. Chem. Phys.
124
,
114705
(
2006
).
40.
D. A.
Schmidt
and
K.
Miki
,
J. Phys. Chem. A
111
,
10119
(
2007
).
41.
L. F.
Scatena
,
M. G.
Brown
, and
G. L.
Richmond
,
Science
292
,
908
(
2001
).
42.
F.
Niu
,
R.
Schulz
,
A.
Castañeda Medina
,
R.
Schmid
, and
A.
Erbe
,
Phys. Chem. Chem. Phys.
19
,
13585
(
2017
).
43.
M.
Rabe
,
H. R.
Zope
, and
A.
Kros
,
Langmuir
31
,
9953
(
2015
).
44.
S.
Nayak
,
P. U.
Biedermann
,
M.
Stratmann
, and
A.
Erbe
,
Phys. Chem. Chem. Phys.
15
,
5771
(
2013
).
45.
S.
Nayak
,
P. U.
Biedermann
,
M.
Stratmann
, and
A.
Erbe
,
Electrochim. Acta
106
,
472
(
2013
).
46.
See https://edmond.mpdl.mpg.de/imeji/collection/Tr6mbX98OcP9_C0J for “Data package for: Vibrational spectroscopic study of pH dependent solvation at an Ge(100)-water interface during an electrode potential triggered surface termination transition,”
2018
.
47.
R. I.
Shrager
,
Chemom. Intell. Lab. Syst.
1
,
59
(
1986
).
48.
R. W.
Hendler
and
R. I.
Shrager
,
J. Biochem. Biophys. Methods
28
,
1
(
1994
).
49.
F.
Maroun
,
J.-N.
Chazalviel
,
F.
Ozanam
, and
D.
Lincot
,
J. Electroanal. Chem.
549
,
161
(
2003
).
50.
J. P.
Hoare
,
J. Electrochem. Soc.
116
,
1168
(
1969
).
51.
N.
Wiberg
,
Hollemann-Wiberg, Lehrbuch der Anorganischen Chemie
, 101st ed. (
Walter de Gruyter
,
Berlin
,
1995
), p.
958
.
52.
M.
Cardona
,
Phys. Status Solidi B
118
,
463
(
1983
).
53.
S.
Rivillon
,
Y. J.
Chabal
,
F.
Amy
, and
A.
Kahn
,
Appl. Phys. Lett.
87
,
253101
(
2005
).
54.
E.
Crowell
and
G.
Lu
,
J. Electron Spectrosc. Relat. Phenom.
54-55
,
1045
(
1990
).
55.
F.
Maroun
,
F.
Ozanam
, and
J.-N.
Chazalviel
,
Surf. Sci.
427-428
,
184
(
1999
).
56.
C. I.
Ratcliffe
and
D. E.
Irish
,
Can. J. Chem.
62
,
1134
(
1984
).
57.
L.
Bencivenni
,
R.
Caminiti
,
A.
Feltrin
,
F.
Ramondo
, and
C.
Sadun
,
J. Mol. Struct.: THEOCHEM
257
,
369
(
1992
).
58.
A.
Karelin
,
Z.
Grigorovich
, and
V.
Rosolovskii
,
Spectrochim. Acta, Part A
31
,
765
(
1975
).
59.
H.
Gobrecht
,
A.
De Haan
, and
R.
Thull
,
Ber. Bunsen-Ges. Phys. Chem.
76
,
602
(
1972
).
60.
C.
Bohren
and
D. R.
Huffman
,
Absorption and Scattering of Light by Small Particles
(
Wiley
,
New York
,
1983
).
61.
W.
Kaiser
,
R. J.
Collins
, and
H. Y.
Fan
,
Phys. Rev.
91
,
1380
(
1953
).
62.
E.
Kane
,
J. Phys. Chem. Solids
1
,
82
(
1956
).
63.
A. H.
Kahn
,
Phys. Rev.
97
,
1647
(
1955
).
64.
J.
Bertie
and
Z.
Lan
,
Appl. Spectrosc.
50
,
1047
(
1996
).
65.
A.
Erbe
,
A.
Sarfraz
,
C.
Toparli
,
K.
Schwenzfeier
, and
F.
Niu
, in
Soft Matter at Aqueous Interfaces
, Volume 917 of Lecture Notes in Physics, edited by
P. R.
Lang
and
Y.
Liu
(
Springer
,
Cham, Switzerland
,
2016
), pp.
459
490
.
66.
H. R.
Zelsmann
,
J. Mol. Struct.
350
,
95
(
1995
).
67.
R.
Khatib
,
T.
Hasegawa
,
M.
Sulpizi
,
E. H. G.
Backus
,
M.
Bonn
, and
Y.
Nagata
,
J. Phys. Chem. C
120
,
18665
(
2016
).
68.
Y.
Maréchal
,
J. Mol. Struct.
1004
,
146
(
2011
).
69.
N. J.
Harrick
,
Internal Reflection Spectroscopy
(
Harrick Scientific
,
New York
,
1987
).
70.
M.
Falk
and
T. A.
Ford
,
Can. J. Chem.
44
,
1699
(
1966
).
71.
M.
Schubert
,
Phys. Rev. B
53
,
4265
(
1996
).
72.
M.
Reithmeier
and
A.
Erbe
,
Phys. Chem. Chem. Phys.
12
,
14798
(
2010
).
73.
D. B.
Asay
and
S. H.
Kim
,
J. Phys. Chem. B
109
,
16760
(
2005
).
74.
M.
Foster
,
M.
Furse
, and
D.
Passno
,
Surf. Sci.
502-503
,
102
(
2002
).
75.
M.
Foster
,
M.
D’Agostino
, and
D.
Passno
,
Surf. Sci.
590
,
31
(
2005
).
76.
P. B.
Miranda
,
L.
Xu
,
Y. R.
Shen
, and
M.
Salmeron
,
Phys. Rev. Lett.
81
,
5876
(
1998
).
77.
M. S.
Bergren
,
D.
Schuh
,
M. G.
Sceats
, and
S. A.
Rice
,
J. Chem. Phys.
69
,
3477
(
1978
).
78.
J.
Janecěk
and
R. R.
Netz
,
Langmuir
23
,
8417
(
2007
).
79.
Q.
Du
,
R.
Superfine
,
E.
Freysz
, and
Y. R.
Shen
,
Phys. Rev. Lett.
70
,
2313
(
1993
).
80.
A.
Yamakata
,
E.
Soeta
,
T.
Ishiyama
,
M.
Osawa
, and
A.
Morita
,
J. Am. Chem. Soc.
135
,
15033
(
2013
).
81.
L. F.
Scatena
and
G. L.
Richmond
,
J. Phys. Chem. B
105
,
11240
(
2001
).
82.
M. G.
Brown
,
D. S.
Walker
,
E. A.
Raymond
, and
G. L.
Richmond
,
J. Phys. Chem. B
107
,
237
(
2003
).
83.
S.
Devineau
,
K. I.
Inoue
,
R.
Kusaka
,
S. H.
Urashima
,
S.
Nihonyanagi
,
D.
Baigl
,
A.
Tsuneshige
, and
T.
Tahara
,
Phys. Chem. Chem. Phys.
19
,
10292
(
2017
).
84.
M. A.
Sánchez
,
T.
Kling
,
T.
Ishiyama
,
M.-J.
van Zadel
,
P. J.
Bisson
,
M.
Mezger
,
M. N.
Jochum
,
J. D.
Cyran
,
W. J.
Smit
,
H. J.
Bakker
,
M. J.
Shultz
,
A.
Morita
,
D.
Donadio
,
Y.
Nagata
,
M.
Bonn
, and
E. H. G.
Backus
,
Proc. Natl. Acad. Sci. U. S. A.
114
,
227
(
2017
).
You do not currently have access to this content.