The absolute intrinsic hydration free energy GH+,wat of the proton, the surface electric potential jump χwat upon entering bulk water, and the absolute redox potential VH+,wat of the reference hydrogen electrode are cornerstone quantities for formulating single-ion thermodynamics on absolute scales. They can be easily calculated from each other but remain fundamentally elusive, i.e., they cannot be determined experimentally without invoking some extra-thermodynamic assumption (ETA). The Born model provides a natural framework to formulate such an assumption (Born ETA), as it automatically factors out the contribution of crossing the water surface from the hydration free energy. However, this model describes the short-range solvation inaccurately and relies on the choice of arbitrary ion-size parameters. In the present study, both shortcomings are alleviated by performing first-principle calculations of the hydration free energies of the sodium (Na+) and potassium (K+) ions. The calculations rely on thermodynamic integration based on quantum-mechanical molecular-mechanical (QM/MM) molecular dynamics (MD) simulations involving the ion and 2000 water molecules. The ion and its first hydration shell are described using a correlated ab initio method, namely resolution-of-identity second-order Møller-Plesset perturbation (RIMP2). The next hydration shells are described using the extended simple point charge water model (SPC/E). The hydration free energy is first calculated at the MM level and subsequently increased by a quantization term accounting for the transformation to a QM/MM description. It is also corrected for finite-size, approximate-electrostatics, and potential-summation errors, as well as standard-state definition. These computationally intensive simulations provide accurate first-principle estimates for GH+,wat, χwat, and VH+,wat, reported with statistical errors based on a confidence interval of 99%. The values obtained from the independent Na+ and K+ simulations are in excellent agreement. In particular, the difference between the two hydration free energies, which is not an elusive quantity, is 73.9 ± 5.4 kJ mol−1 (K+ minus Na+), to be compared with the experimental value of 71.7 ± 2.8 kJ mol−1. The calculated values of GH+,wat, χwat, and VH+,wat (−1096.7 ± 6.1 kJ mol−1, 0.10 ± 0.10 V, and 4.32 ± 0.06 V, respectively, averaging over the two ions) are also in remarkable agreement with the values recommended by Reif and Hünenberger based on a thorough analysis of the experimental literature (−1100 ± 5 kJ mol−1, 0.13 ± 0.10 V, and 4.28 ± 0.13 V, respectively). The QM/MM MD simulations are also shown to provide an accurate description of the hydration structure, dynamics, and energetics.

1.
P. H.
Hünenberger
and
M. M.
Reif
,
Single-Ion Solvation: Experimental and Theoretical Approaches to Elusive Thermodynamic Quantities
, Theoretical and Computational Chemistry Series, 1st ed. (
Royal Society of Chemistry
,
London, UK
,
2011
), ISBN: 978-1-84755-187-0.
2.
L.
Vlcek
and
A. A.
Chialvo
, “
Single-ion hydration thermodynamics from clusters to bulk solutions: Recent insights from molecular modeling
,”
Fluid Phase Equilib.
407
,
58
75
(
2016
).
3.
M. M.
Reif
and
P. H.
Hünenberger
, “
Computation of methodology-independent single-ion solvation properties from molecular simulations. III. Correction terms for the solvation free energies, enthalpies, entropies, heat capacities, volumes, compressibilities and expansivities of solvated ions
,”
J. Chem. Phys.
134
,
144103-1
144103-30
(
2011
).
4.
B.
Dahlgren
,
M. M.
Reif
,
P. H.
Hünenberger
, and
N.
Hansen
, “
Calculation of derivative thermodynamic hydration and aqueous partial molar properties of ions based on atomistic simulations
,”
J. Chem. Theory Comput.
8
,
3542
3564
(
2012
).
5.
F.
Sedlmeier
and
R. R.
Netz
, “
Solvation thermodynamics and heat capacity of polar and charged solutes in water
,”
J. Chem. Phys.
138
,
115101-1
115101-12
(
2013
).
6.
K.
Fajans
, “
Löslichkeit und Ionisation vom Standpunkte der Atomstruktur
,”
Naturwiss
9
,
729
738
(
1921
).
7.
E. C.
Baughan
, “
The heat of hydration of the proton
,”
J. Chem. Soc.
1940
,
1403
.
8.
L.
Benjamin
and
V.
Gold
, “
A table of thermodynamic functions of ionic hydration
,”
Trans. Faraday Soc.
50
,
797
799
(
1954
).
9.
H. F.
Halliwell
and
S. C.
Nyburg
, “
Enthalpy of hydration of the proton
,”
Trans. Faraday Soc.
59
,
1126
1140
(
1963
).
10.
D. R.
Rosseinsky
, “
Electrode potentials and hydration energies. Theories and correlations
,”
Chem. Rev.
65
,
467
490
(
1965
).
11.
R. M.
Noyes
, “
Thermodynamics of ion hydration as a measure of effective dielectric properties of water
,”
J. Am. Chem. Soc.
84
,
513
522
(
1962
).
12.
M. D.
Tissandier
,
K. A.
Cowen
,
W. Y.
Feng
,
E.
Gundlach
,
M. H.
Cohen
,
A. D.
Earhart
,
J. V.
Coe
, and
T. R.
Tuttle
, Jr.
, “
The proton’s absolute aqueous enthalpy and Gibbs free energy of solvation from cluster-ion solvation data
,”
J. Phys. Chem. A
102
,
7787
7794
(
1998
).
13.
M. D.
Tissandier
,
K. A.
Cowen
,
W. Y.
Feng
,
E.
Gundlach
,
M. H.
Cohen
,
A. D.
Earhart
,
J. V.
Coe
, and
T. R.
Tuttle
, Jr.
, “
Correction to ‘The proton’s absolute aqueous enthalpy and Gibbs free energy of solvation from cluster-ion solvation data’ [J. Phys. Chem. A 102, 7787–7794 (1998)]
,”
J. Phys. Chem. A
102
,
9308
(
1998
).
14.
M.
Born
, “
Volumen und Hydrationswärme der Ionen
,”
Z. Phys.
1
,
45
48
(
1920
).
15.
M. A.
Kastenholz
and
P. H.
Hünenberger
, “
Computation of methodology-independent ionic solvation free energies from molecular simulations: I. The electrostatic potential in molecular liquids
,”
J. Chem. Phys.
124
,
124106-1
124106-27
(
2006
).
16.
M. A.
Kastenholz
and
P. H.
Hünenberger
, “
Computation of methodology-independent ionic solvation free energies from molecular simulations: II. The hydration free energy of the sodium cation
,”
J. Chem. Phys.
124
,
224501-1
224501-20
(
2006
).
17.
M. M.
Reif
and
P. H.
Hünenberger
, “
Origin of asymmetric solvation effects for ions in water and organic solvents investigated using molecular dynamics simulations: The Swain acity-basity scale revisited
,”
J. Phys. Chem. B
120
,
8485
8517
(
2016
).
18.
N. S.
Hush
, “
The free energies of hydration of gaseous ions
,”
Aust. J. Sci. Res.
1
,
480
493
(
1948
).
19.
J. E. B.
Randles
, “
The real hydration energies of ions
,”
Trans. Faraday Soc.
52
,
1573
1581
(
1956
).
20.
W. R.
Fawcett
,
Liquids, Solutions and Interfaces
(
Oxford University Press
,
Oxford, UK
,
2004
).
21.
R. C.
Remsing
,
M. D.
Baer
,
G. K.
Schenter
,
C. J.
Mundy
, and
J. D.
Weeks
, “
The role of broken symmetry in solvation of a spherical cavity in classical and quantum water models
,”
J. Phys. Chem. Lett.
5
,
2767
2774
(
2014
).
22.
T.
Simonson
,
G.
Hummer
, and
B.
Roux
, “
Equivalence of M- and P-summation in calculations of ionic solvation free energies
,”
J. Phys. Chem. A
121
,
1525
1530
(
2017
).
23.
E. A.
Guggenheim
, “
The conceptions of electrical potential differences between two phases and the individual activities of ions
,”
J. Phys. Chem.
33
,
842
849
(
1929
).
24.
E. A.
Guggenheim
, “
On the conception of electrical potential difference between two phases. II
,”
J. Phys. Chem.
34
,
1540
1543
(
1930
).
25.
A. L.
Rockwood
, “
Meaning and measurability of single-ion activities, the thermodynamic foundations of pH, and the Gibbs free energy for the transfer of ions between dissimilar materials
,”
Chem. Phys. Chem.
16
,
1978
1991
(
2015
).
26.
M.
Misin
,
M. V.
Fedorov
, and
D. S.
Palmer
, “
Hydration free energies of molecular ions from theory and simulation
,”
J. Phys. Chem. B
120
,
975
983
(
2016
).
27.
E.
Lange
and
K. P.
Mishchenko
, “
Zur Thermodynamik der Ionensolvatation
,”
Z. Phys. Chem. A
149
,
1
41
(
1930
).
28.
L. V.
Coulter
, “
The thermochemistry of the alkali and alkaline earth metals and halides in liquid ammonia at −33°
,”
J. Phys. Chem.
57
,
553
558
(
1953
).
29.
M. J.
Blandamer
and
M. C.
Symons
, “
Significance of new values for ionic radii to solvation phenomena in aqueous solution
,”
J. Phys. Chem.
67
,
1304
1306
(
1963
).
30.
F.
Franks
and
D. S.
Reid
, “
Ionic solvation entropies in mixed aqueous solvents
,”
J. Phys. Chem.
73
,
3152
3154
(
1969
).
31.
W. M.
Latimer
,
K. S.
Pitzer
, and
C. M.
Slansky
, “
The free energy of hydration of gaseous ions, and the absolute potential of the normal calomel electrode
,”
J. Chem. Phys.
7
,
108
111
(
1939
).
32.
F.
Hirata
,
P.
Redfern
, and
R. M.
Levy
, “
Viewing the Born model for ion hydration through a microscope
,”
Int. J. Quantum Chem.
15
,
179
190
(
1988
).
33.
D. Y. C.
Chan
,
D. J.
Mitchell
, and
B. W.
Ninham
, “
A model of solvent structure around ions
,”
J. Chem. Phys.
70
,
2946
2957
(
1979
).
34.
L.
Blum
and
W. R.
Fawcett
, “
Application of the mean spherical approximation to describe the Gibbs solvation energies of monovalent monoatomic ions in polar solvents
,”
J. Phys. Chem.
96
,
408
414
(
1992
).
35.
W. R.
Fawcett
and
L.
Blum
, “
Application of the mean spherical approximation to the estimation of single ion thermodynamic quantities of solvation for monoatomic monovalent ions in aqueous solutions
,”
J. Electroanal. Chem.
328
,
333
340
(
1992
).
36.
C. S.
Babu
and
C.
Lim
, “
Theory of ionic hydration: Insights from molecular dynamics simulations and experiment
,”
J. Phys. Chem. B
103
,
7958
7968
(
1999
).
37.
C. S.
Babu
and
C.
Lim
, “
A new interpretation of the effective Born radius from simulations and experiment
,”
Chem. Phys. Lett.
310
,
225
228
(
1999
).
38.
C. S.
Babu
and
C.
Lim
, “
Incorporating nonlinear solvent response in continuum dielectric models using a two-sphere description of the Born radius
,”
J. Phys. Chem. A
105
,
5030
5036
(
2001
).
39.
L.
Sandberg
and
O.
Edholm
, “
Nonlinear response effects in continuum models of the hydration of ions
,”
J. Chem. Phys.
116
,
2936
2944
(
2002
).
40.
H. S.
Ashbaugh
and
D.
Asthagiri
, “
Single ion hydration free energies: A consistent comparison between experiment and classical molecular simulation
,”
J. Chem. Phys.
129
,
204501-1
204501-6
(
2008
).
41.
Y.
Marcus
, “
The thermodynamics of solvation of ions. Part IV. Application of the tetraphenylarsonium tetraphenylborate (TATB) assumption to the hydration of ions and to properties of hydrated ions
,”
J. Chem. Soc., Faraday Trans. 1
83
,
2985
2992
(
1987
).
42.
C. P.
Kelly
,
C. J.
Cramer
, and
D. G.
Truhlar
, “
Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton
,”
J. Phys. Chem. B
110
,
16066
16081
(
2006
).
43.
J. F.
Coetzee
and
W. R.
Sharpe
, “
Solute-solvent interactions. VI. Specific interactions of tetraphenylarsonium, tetraphenylphosphonium, and tetraphenylborate ions with water and other solvents
,”
J. Phys. Chem.
75
,
3141
3146
(
1971
).
44.
J. I.
Kim
, “
Preferential solvation of single ions. A critical study of the Ph4As–Ph4B assumption for single ion thermodynamics in amphiprotic and dipolar-aprotic solvents
,”
J. Phys. Chem.
82
,
191
199
(
1978
).
45.
R.
Schurhammer
and
G.
Wipff
, “
About the TATB hypothesis: Solvation of the AsΦ4+ and BΦ4 ions and their tetrahedral and spherical analogues in aqueous/nonaqueous solvents and at water-chloroform interfaces
,”
New J. Chem.
23
,
381
391
(
1999
).
46.
R.
Schurhammer
and
G.
Wipff
, “
Are the hydrophobic AsΦ4+ and BΦ4 ions equally solvated? A theoretical investigation in aqueous and nonaqueous solutions using different charge distributions
,”
J. Phys. Chem. A
104
,
11159
11168
(
2000
).
47.
J.
Schamberger
and
R. J.
Clarke
, “
Hydrophobic ion hydration and the magnitude of the dipole potential
,”
Biophys. J.
82
,
3081
3088
(
2002
).
48.
W.
Wachter
,
R.
Buchner
, and
G.
Hefter
, “
Hydration of tetraphenylphosphonium and tetraphenylborate ions by dielectric relaxation spectroscopy
,”
J. Phys. Chem. B
110
,
5147
5154
(
2006
).
49.
S. C.
Lahiri
,
B. P.
Dey
, and
K.
Sharma
, “
On the suitability and validity of ‘reference electrolyte’ method for the determination of single ion thermodynamic properties in solutions
,”
Z. Phys. Chem.
228
,
879
900
(
2014
).
50.
R.
Scheu
,
B. M.
Rankin
,
Y.
Chen
,
K. C.
Jena
,
D.
Ben-Amotz
, and
S.
Roke
, “
Charge asymmetry at aqueous hydrophobic interfaces and hydration shells
,”
Angew. Chem., Int. Ed.
53
,
9560
9563
(
2014
).
51.
O.
Carrier
,
E. H. G.
Backus
,
N.
Shahidzadeh
,
J.
Franz
,
M.
Wagner
,
Y.
Nagata
,
M.
Bonn
, and
D.
Bonn
, “
Oppositely charged ions at water−air and water−oil interfaces: Contrasting the molecular picture with thermodynamics
,”
J. Phys. Chem. Lett.
7
,
825
830
(
2016
).
52.
R.
Bhattacharyya
and
S. C.
Lahiri
, “
The determination of absolute values of entropies of hydration [ΔSabso(H+)h] and aquation [ΔSabso(H+)aq] and the thermodynamics of proton in solutions
,”
Z. Phys. Chem.
231
,
983
1015
(
2017
).
53.
D.
Asthagiri
,
L. R.
Pratt
, and
H. S.
Ashbaugh
, “
Absolute hydration free energies of ions, ion-water clusters and quasichemical theory
,”
J. Chem. Phys.
119
,
2702
2708
(
2003
).
54.
L.
Vlcek
,
A. A.
Chialvo
, and
J. M.
Simonson
, “
Correspondence between cluster-ion and bulk solution thermodynamic properties: On the validity of the cluster-pair-based approximation
,”
J. Phys. Chem. A
117
,
11328
11338
(
2013
).
55.
T. P.
Pollard
and
T. L.
Beck
, “
The thermodynamics of proton hydration and the electrochemical surface potential of water
,”
J. Chem. Phys.
141
,
18C512-1
18C512-10
(
2014
).
56.
T. P.
Pollard
and
T. L.
Beck
, “
Quasichemical analysis of the cluster-pair approximation for the thermodynamics of proton hydration
,”
J. Chem. Phys.
140
,
224507-1
224507-11
(
2014
).
57.
I.
Nezbeda
,
F.
Moučka
, and
W. R.
Smith
, “
Recent progress in molecular simulation of aqueous electrolytes: Force fields, chemical potentials and solubility
,”
Mol. Phys.
114
,
1665
1690
(
2016
).
58.
T. P.
Pollard
and
T. L.
Beck
, “
Toward a quantitative theory of Hofmeister phenomena: From quantum effects to thermodynamics
,”
Curr. Opin. Colloid Interface Sci.
23
,
110
118
(
2016
).
59.
P.
Li
and
K. M.
Merz
, Jr.
, “
Metal ion modeling using classical mechanics
,”
Chem. Rev.
117
,
1564
1686
(
2017
).
60.
T. P.
Straatsma
and
H. J. C.
Berendsen
, “
Free energy of ionic hydration: Analysis of a thermodynamic integration technique to evaluate free energy differences by molecular dynamics simulations
,”
J. Chem. Phys.
89
,
5876
5886
(
1988
).
61.
G.
Hummer
,
L. R.
Pratt
, and
A. E.
Garcia
, “
Free energy of ionic hydration
,”
J. Phys. Chem.
100
,
1206
1215
(
1996
).
62.
H. S.
Ashbaugh
, “
Convergence of molecular and macroscopic continuum descriptions of ion hydration
,”
J. Phys. Chem. B
104
,
7235
7238
(
2000
).
63.
A.
Grossfield
,
P.
Ren
, and
J. W.
Ponder
, “
Ion solvation thermodynamics from simulation with a polarizable force field
,”
J. Am. Chem. Soc.
125
,
15671
15682
(
2003
).
64.
G.
Lamoureux
and
B.
Roux
, “
Absolute hydration free energy scale for alkali and halide ions established from simulations with a polarizable force field
,”
J. Phys. Chem. B
110
,
3308
3322
(
2006
).
65.
M. M.
Reif
and
P. H.
Hünenberger
, “
Computation of methodology-independent single-ion solvation properties from molecular simulations. IV. Optimized Lennard-Jones parameter sets for the alkali and halide ions in water
,”
J. Chem. Phys.
134
,
144104-1
144104-25
(
2011
).
66.
D. J.
Arismendi-Arrieta
,
M.
Riera
,
P.
Bajaj
,
R.
Prosmiti
, and
F.
Paesani
, “
i-TTM model for ab initio-based ion-water interaction potentials. I. Halide-water potential energy functions
,”
J. Phys. Chem. B
120
,
1822
1832
(
2016
).
67.
M.
Riera
,
A. W.
Götz
, and
F.
Paesani
, “
The i-TTM model for ab initio-based ion-water interaction potentials. II. Alkali metal ion-water potential energy functions
,”
Phys. Chem. Chem. Phys.
18
,
30334
30343
(
2016
).
68.
D.
Horinek
,
S. I.
Mamatkulov
, and
R. R.
Netz
, “
Rational design of ion force fields based on thermodynamic solvation properties
,”
J. Chem. Phys.
130
,
124507-1
124507-21
(
2009
).
69.
A. H.
Mao
and
R. V.
Pappu
, “
Crystal lattice properties fully determine short-range interaction parameters for alkali and halide ions
,”
J. Chem. Phys.
137
,
064104-1
064104-8
(
2012
).
70.
J.
Yoo
and
A.
Aksimentiev
, “
Improved parametrization of Li+, Na+, K+, ang Mg2+ ions for all-atom molecular dynamics simulations of nucleic acid systems
,”
J. Phys. Chem. Lett.
3
,
45
50
(
2012
).
71.
S.
Deublein
,
J.
Vrabec
, and
H.
Hasse
, “
A set of molecular models for alkali and halide ions in aqueous solution
,”
J. Chem. Phys.
136
,
084501-1
084501-10
(
2012
).
72.
M.
Fyta
and
R. R.
Netz
, “
Ionic force field optimization based on single-ion and ion-pair solvation properties: Going beyond mixing rule
,”
J. Chem. Phys.
136
,
124103-1
124103-11
(
2012
).
73.
F.
Moučka
,
I.
Nezbeda
, and
W. R.
Smith
, “
Molecular force fields for aqueous electrolytes: SPC/E-compatible charged LJ sphere models and their limitations
,”
J. Chem. Phys.
138
,
154102-1
154102-9
(
2013
).
74.
S.
Reiser
,
S.
Deublein
,
J.
Vrabec
, and
H.
Hasse
, “
Molecular dispersion energy parameters for alkali and halide ions in aqueous solution
,”
J. Chem. Phys.
140
,
044504-1
044504-13
(
2014
).
75.
Z. R.
Kann
and
J. L.
Skinner
, “
A scaled-ionic-charge simulation model that reproduces enhanced and suppressed water diffusion in aqueous salt solutions
,”
J. Chem. Phys.
141
,
104507-1
104507-7
(
2014
).
76.
P.
Li
,
L. F.
Song
, and
K. M.
Merz
, Jr.
, “
Systematic parameterization of monovalent ions employing the nonbonded model
,”
J. Chem. Theory Comput.
11
,
1645
1657
(
2015
).
77.
J.
Li
and
F.
Wang
, “
Pairwise-additive force fields for selected aqueous monovalent ions from adaptive force matching
,”
J. Chem. Phys.
143
,
194505-1
194505-12
(
2015
).
78.
J.
Li
and
F.
Wang
, “
The effect of core correlation on the MP2 hydration free energies of Li+, Na+, and K+
,”
J. Phys. Chem. B
120
,
9088
9096
(
2016
).
79.
J.
Li
and
F.
Wang
, “
Accurate prediction of the hydration free energies of 20 salts through adaptive force matching and the proper comparison with experimental references
,”
J. Phys. Chem. B
121
,
6637
6645
(
2017
).
80.
V.
Satarifard
,
S.
Kashefolgheta
,
A.
Vila Verde
, and
A.
Grafmüller
, “
Is the solution activity derivative sufficient to parametrize ion-ion interactions? Ions for TIP5P water
,”
J. Chem. Theory Comput.
13
,
2112
2122
(
2017
).
81.
H. M.
Senn
and
W.
Thiel
, “
QM/MM methods for biomolecular systems
,”
Angew. Chem., Int. Ed. Engl.
48
,
1198
1229
(
2009
).
82.
W.
Yang
,
Q.
Cui
,
D.
Min
, and
H.
Li
, “
QM/MM alchemical free energy simulations: Challenges and recent developments
,”
Annu. Rev. Comput. Chem.
6
,
51
62
(
2010
).
83.
S.
Pezeshki
and
H.
Lin
, “
Recent progress in adaptive-partitioning QM/MM methods for Born-Oppenheimer molecular dynamics
,” in
Quantum Modeling of Complex Molecular Systems, Challenges and Advances in Computational Chemistry and Physics
(
Springer International Publishing
,
Switzerland
,
2015
), Vol. 21, pp.
93
113
.
84.
Q.
Cui
, “
Perspective: Quantum mechanical methods in biochemistry and biophysics
,”
J. Chem. Phys.
145
,
140901-1
140901-12
(
2016
).
85.
M.
Zheng
and
M. P.
Waller
, “
Adaptive quantum mechanics/molecular mechanics methods
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
6
,
369
385
(
2016
).
86.
X.
Lu
,
D.
Fang
,
S.
Ito
,
Y.
Okamoto
,
V.
Ovchinnikov
, and
Q.
Cui
, “
QM/MM free energy simulations: Recent progress and challenges
,”
Mol. Simul.
42
,
1056
1078
(
2016
).
87.
T.
Beck
,
M. E.
Paulaitis
, and
L. R.
Pratt
,
The Potential Distribution Theorem and Models of Molecular Solutions
(
Cambridge University Press
,
Cambridge, UK
,
2007
).
88.
D. M.
Rogers
and
T. L.
Beck
, “
Modeling molecular and ionic absolute solvation free energies with quasichemical theory bounds
,”
J. Chem. Phys.
129
,
134505-1
134505-15
(
2008
).
89.
T. L.
Beck
, “
Hydration free energies by energetic partitioning of the potential distribution theorem
,”
J. Stat. Phys.
145
,
335
354
(
2011
).
90.
D. M.
Rogers
,
D.
Jiao
,
L. R.
Pratt
, and
S. B.
Rempe
, “
Structural models and molecular thermodynamics of hydration of ions and small molecules
,”
Annu. Rep. Comput. Chem.
8
,
71
127
(
2012
).
91.
M.
Isegawa
,
F.
Neese
, and
D. A.
Pantazis
, “
Ionization energies and aqueous redox potentials of organic molecules: Comparison of DFT, correlated ab initio theory and pair natural orbital approaches
,”
J. Chem. Theory Comput.
12
,
2272
2284
(
2016
).
92.
H.
Bethe
, “
Statistical theory of superlattices
,”
Proc. R. Soc. London, Ser. A
150
,
552
575
(
1935
).
93.
E.
Guggenheim
, “
The statistical mechanics of regular solutions
,”
Proc. R. Soc. London
148
,
304
312
(
1935
).
94.
J. G.
Kirkwood
, “
Statistical mechanics of cooperative phenomena
,”
J. Chem. Phys.
8
,
623
627
(
1940
).
95.
R.
Car
and
M.
Parrinello
, “
Unified approach for molecular dynamics and density-functional theory
,”
Phys. Rev. Lett.
55
,
2471
2474
(
1985
).
96.
M. C.
Payne
,
M. P.
Teter
,
D. C.
Allan
,
T. A.
Arias
, and
J. D.
Joannopoulos
, “
Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients
,”
Rev. Mod. Phys.
64
,
1045
1097
(
1992
).
97.
L. M.
Ramaniah
,
M.
Bernasconi
, and
M.
Parrinello
, “
Ab initio molecular-dynamics simulation of K+ solvation in water
,”
J. Chem. Phys.
111
,
1587
1591
(
1999
).
98.
S. B.
Rempe
and
L. R.
Pratt
, “
The hydration number of Na+ in liquid water
,”
Fluid Phase Equilib.
183-184
,
121
132
(
2001
).
99.
S. B.
Rempe
,
D.
Asthagiri
, and
L. R.
Pratt
, “
Inner shell definition and absolute hydration free energy of K+ (aq) on the basis of quasi-chemical theory and ab initio molecular dynamics
,”
Phys. Chem. Chem. Phys.
6
,
1966
1969
(
2004
).
100.
S.
Varma
and
S. B.
Rempe
, “
Coordination numbers of alkali metal ions in aqueous solutions
,”
Biophys. Chem.
124
,
192
199
(
2006
).
101.
T. W.
Whitfield
,
S.
Varma
,
E.
Harder
,
G.
Lamoureux
,
S. B.
Rempe
, and
B.
Roux
, “
Theoretical study of aqueous solvation of K+ comparing ab initio, polarizable, and fixed-charge models
,”
J. Chem. Theory Comput.
3
,
2068
2082
(
2007
).
102.
A.
Bankura
,
V.
Carnevale
, and
M. L.
Klein
, “
Hydration structure of salt solutions from ab initio molecular dynamics
,”
J. Chem. Phys.
138
,
014501-1
014501-10
(
2013
).
103.
A.
Bankura
,
V.
Carnevale
, and
M. L.
Klein
, “
Hydration structure of Na+ and K+ from ab initio molecular dynamics based on modern density functional theory
,”
Mol. Phys.
112
,
1448
1456
(
2014
).
104.
Y.
Yao
,
Y.
Kanai
, and
M. L.
Berkowitz
, “
Role of charge transfer in water diffusivity in aqueous ionic solutions
,”
J. Phys. Chem. Lett.
5
,
2711
2716
(
2014
).
105.
T.
Ikeda
and
M.
Boero
, “
Role of van der Waals corrections in first principles simulations of alkali metal ions in aqueous solutions
,”
J. Chem. Phys.
143
,
194510-1
194510-7
(
2015
).
106.
M.
Śmiechowski
,
J.
Sun
,
H.
Forbert
, and
D.
Marx
, “
Solvation shell resolved THz spectra of simple aqua ions. Distinct distance- and frequency-dependent contributions of solvation shells
,”
Phys. Chem. Chem. Phys.
17
,
8323
8329
(
2015
).
107.
Y.
Yao
,
M. L.
Berkowitz
, and
Y.
Kanai
, “
Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer
,”
J. Chem. Phys.
143
,
241101
(
2015
).
108.
T. A.
Pham
,
T.
Ogitsu
,
E. Y.
Lau
, and
E.
Schwegler
, “
Structure and dynamics of aqueous solutions from PBE-based first-principles molecular dynamics simulations
,”
J. Chem. Phys.
145
,
154501-1
154501-9
(
2016
).
109.
Y.
Liu
,
H.
Lu
,
Y.
Wu
,
T.
Hu
, and
Q.
Li
, “
Hydration and coordination of K+ solvation in water from ab initio molecular-dynamics simulation
,”
J. Chem. Phys.
132
,
124503-1
124503-4
(
2010
).
110.
H. C.
Watanabe
,
M.
Kubillus
,
T.
Kubař
,
R.
Stach
,
B.
Mizaikoff
, and
H.
Ishikita
, “
Cation solvation with quantum chemical effects modeled by a size-consistent multi-partitioning quantum mechanics/molecular mechanics method
,”
Phys. Chem. Chem. Phys.
19
,
17985
17997
(
2017
).
111.
K.
Leung
,
S. B.
Rempe
, and
O. A.
von Lilienfeld
, “
Ab initio molecular dynamics calculations of ion hydration free energies
,”
J. Chem. Phys.
130
,
204507-1
204507-11
(
2009
).
112.
T. T.
Duignan
,
M. D.
Baer
,
G. K.
Schenter
, and
C. J.
Mundy
, “
Electrostatic solvation free energies of charged hard spheres using molecular dynamics with density functional theory interactions
,”
J. Chem. Phys.
147
,
161716-1
161716-11
(
2017
).
113.
T. T.
Duignan
,
M. D.
Baer
,
G. K.
Schenter
, and
C. J.
Mundy
, “
Real single ion solvation free energies with quantum mechanical simulations
,”
Chem. Sci.
8
,
6131
6140
(
2017
).
114.
J.
Frenzel
,
B.
Meyer
, and
D.
Marx
, “
Bicanonical ab initio molecular dynamics for open systems
,”
J. Chem. Theory Comput.
13
,
3455
3469
(
2017
).
115.
J. G.
Kirkwood
, “
Statistical mechanics of fluid mixtures
,”
J. Chem. Phys.
3
,
300
313
(
1935
).
116.
W. C.
Swope
and
H. C.
Andersen
, “
A computer simulation method for the calculation of chemical potentials of liquids and solids using the bicanonical ensemble
,”
J. Chem. Phys.
102
,
2851
2863
(
1995
).
117.
J.
Ho
and
M. L.
Coote
, “
A universal approach for continuum solvent pKa calculations: Are we there yet
,”
Theor. Chem. Acc.
125
,
3
21
(
2010
).
118.
S.
Kathmann
,
G.
Schenter
, and
B.
Garrett
, “
The critical role of anharmonicity in aqueous ionic clusters relevant to nucleation
,”
J. Phys. Chem. C
111
,
4977
4983
(
2007
).
119.
H.
Nakai
and
A.
Ishikawa
, “
Quantum chemical approach for condensed-phase thermochemistry: Proposal of a harmonic solvation model
,”
J. Chem. Phys.
141
,
174106-1
174106-9
(
2014
).
120.
A.
Ishikawa
and
H.
Nakai
, “
Quantum chemical approach for condensed-phase thermochemistry (III): Accurate evaluation of proton hydration energy and standard hydrogen electrode potential
,”
Chem. Phys. Lett.
650
,
159
164
(
2016
).
121.
E.
Schwegler
,
J. C.
Grossman
,
F.
Gygi
, and
G.
Galli
, “
Towards an assessment of the accuracy of density functional theory for first principles simulations of water. II
,”
J. Chem. Phys.
121
,
5400
5409
(
2004
).
122.
P. H.-L.
Sit
and
N.
Marzari
, “
Static and dynamical properties of heavy water at ambient conditions from first-principles molecular dynamics
,”
J. Chem. Phys.
122
,
204510-1
204510-9
(
2005
).
123.
M.
Del Ben
,
M.
Schönherr
,
J.
Hutter
, and
J.
VandeVondele
, “
Bulk liquid water at ambient temperature and pressure from MP2 theory
,”
J. Phys. Chem. Lett.
4
,
3753
3759
(
2013
).
124.
M.
Del Ben
,
O.
Schütt
,
T.
Wentz
,
P.
Messmer
,
J.
Hutter
, and
J.
VandeVondele
, “
Enabling simulation at the fifth rung of DFT: Large scale RPA calculations with excellent time to solution
,”
Comput. Phys. Commun.
187
,
120
129
(
2015
).
125.
M.
Del Ben
,
J.
Hutter
, and
J.
VandeVondele
, “
Probing the structural and dynamical properties of liquid water with models including non-local electron correlation
,”
J. Chem. Phys.
143
,
054506-1
054506-12
(
2015
).
126.
S. Y.
Willow
,
M. A.
Salim
,
K. S.
Kim
, and
S.
Hirata
, “
Ab initio molecular dynamics of liquid water using embedded-fragment second-order many-body perturbation theory towards its accurate property prediction
,”
Sci. Rep.
5
,
14358-1
14358-14
(
2015
).
127.
S. Y.
Willow
,
X. C.
Zeng
,
S. S.
Xantheas
,
K. S.
Kim
, and
S.
Hirata
, “
Why is MP2-water ‘cooler’ and ‘denser’ than DFT-water
,”
J. Phys. Chem. Lett.
7
,
680
684
(
2016
).
128.
M. J.
Gillan
,
D.
Alfè
, and
A.
Michaelides
, “
Perspective: How good is DFT for water
,”
J. Chem. Phys.
144
,
130901-1
130901-33
(
2016
).
129.
A. D.
White
,
C.
Knight
,
G. M.
Hocky
, and
G. A.
Voth
, “
Communication: Improved ab initio molecular dynamics by minimally biasing with experimental data
,”
J. Chem. Phys.
146
,
041102-1
041102-5
(
2017
).
130.
D.
Yuan
,
Y.
Li
,
Z.
Ni
,
P.
Pulay
,
W.
Li
, and
S.
Li
, “
Benchmark relative energies for large water clusters with the generalized energy-based fragmentation method
,”
J. Chem. Theory Comput.
13
,
2696
2704
(
2017
).
131.
M.
Soniat
,
D. M.
Rogers
, and
S. B.
Rempe
, “
Dispersion- and exchange-corrected density functional theory for sodium ion hydration
,”
J. Chem. Theory Comput.
11
,
2958
2967
(
2015
).
132.
I.-F. W.
Kuo
and
C. J.
Mundy
, “
An ab initio molecular dynamics study of the aqueous liquid-vapor interface
,”
Science
303
,
658
660
(
2004
).
133.
M. J.
McGrath
,
J. I.
Siepmann
,
I.-F. W.
Kuo
, and
C. J.
Mundy
, “
Vapor-liquid equilibria of water from first principles: Comparison of density functionals and basis sets
,”
Mol. Phys.
104
,
3619
3626
(
2006
).
134.
K.
Leung
, “
Surface potential at the air-water interface computed using density functional theory
,”
J. Phys. Chem. Lett.
1
,
496
499
(
2010
).
135.
S. M.
Kathmann
,
I.-F. W.
Kuo
,
C. J.
Mundy
, and
G. K.
Schenter
, “
Understanding the surface potential of water
,”
J. Phys. Chem. B
115
,
4369
4377
(
2011
).
136.
M.
Sulpizi
,
M.
Salanne
,
M.
Sprik
, and
M.-P.
Gaigeot
, “
Vibrational sum frequency generation spectroscopy of the water liquid-vapor interface from density functional theory-based molecular dynamics simulations
,”
J. Phys. Chem. Lett.
4
,
83
87
(
2013
).
137.
A.
Alavi
,
J.
Kohanoff
,
M.
Parrinello
, and
D.
Frenkel
, “
Ab initio molecular dynamics with excited electrons
,”
Phys. Rev. Lett.
73
,
2599
2602
(
1994
).
138.
N.
Marzari
,
D.
Vanderbilt
, and
M. C.
Payne
, “
Ensemble density-functional theory for ab initio molecular dynamics of metals and finite-temperature insulators
,”
Phys. Rev. Lett.
79
,
1337
1340
(
1997
).
139.
G.
Li
,
X.
Zhang
, and
Q.
Cui
, “
Free energy perturbation calculations with combined QM/MM potentials. Complications, simplifications, and applications to redox potential calculations
,”
J. Phys. Chem. B
107
,
8643
8653
(
2003
).
140.
O. A.
von Lilienfeld
,
R. D.
Lins
, and
U.
Röthlisberger
, “
Variational particle number approach for rational compound design
,”
Phys. Rev. Lett.
95
,
153002-1
153002-4
(
2005
).
141.
O. A.
von Lilienfeld
and
M. E.
Tuckerman
, “
Alchemical variations of intermolecular energies according to molecular grand-canonical ensemble density functional theory
,”
J. Chem. Theory Comput.
3
,
1083
1090
(
2007
).
142.
J.
VandeVondele
,
R.
Ayala
,
M.
Sulpizi
,
M.
Sprik
, and
J.
Hutter
, “
Redox free energies and one-electron energy levels in density functional theory based ab initio molecular dynamics
,”
J. Electroanal. Chem.
607
,
113
120
(
2007
).
143.
X. C.
Zeng
,
H.
Hu
,
X. Q.
Hu
,
A. J.
Cohen
, and
W. T.
Yang
, “
Ab initio quantum mechanical/molecular mechanical simulation of electron transfer process: Fractional electron approach
,”
J. Chem. Phys.
128
,
124510-1
124510-10
(
2008
).
144.
I.
Tavernelli
,
R.
Vuilleumier
, and
M.
Sprik
, “
Ab initio molecular dynamics for molecules with variable numbers of electrons
,”
Phys. Rev. Lett.
88
,
213002-1
213002-4
(
2002
).
145.
J.
Cheng
,
X.
Liu
,
J.
VandeVondele
,
M.
Sulpizi
, and
M.
Sprik
, “
Redox potentials and acidity constants from density functional theory based molecular dynamics
,”
Acc. Chem. Res.
47
,
3522
3529
(
2014
).
146.
M.
Todorova
and
J.
Neugebauer
, “
Extending the concept of defect chemistry from semiconductor physics to electrochemistry
,”
Phys. Rev. Appl.
1
,
014001-1
014001-15
(
2014
).
147.
F.
Ambrosio
,
G.
Miceli
, and
A.
Pasquarello
, “
Redox levels in aqueous solution: Effect of van der Waals interactions and hybrid functionals
,”
J. Chem. Phys.
143
,
244508-1
244508-15
(
2015
).
148.
L.
Delle Site
and
M.
Praprotnik
, “
Molecular systems with open boundaries: Theory and simulation
,”
Phys. Rep.
693
,
1
56
(
2017
).
149.
L.
Delle Site
, “
Grand canonical adaptive resolution simulation for molecules with electrons: A theoretical framework based on physical consistency
,”
Comput. Phys. Commun.
222
,
94
101
(
2018
).
150.
Y.
Marcus
, “
Ion hydration
,” in
Ion Solvation
(
John Wiley & Sons
,
New York, USA
,
1985
), pp.
87
129
.
151.
E.
Rossini
and
E.-W.
Knap
, “
Proton solvation in protic and aprotic solvents
,”
J. Comput. Chem.
37
,
1082
1091
(
2016
).
152.
H.
Zhang
,
Y.
Jiang
,
H.
Yan
,
C.
Yin
,
T.
Tan
, and
D.
van der Spoel
, “
Free-energy calculations of ionic hydration consistent with the experimental hydration free energy of the proton
,”
J. Phys. Chem. Lett.
8
,
2705
2712
(
2017
).
153.
T. S.
Hofer
,
B. M.
Rode
,
A. B.
Pribil
, and
B. R.
Randolf
, “
Simulations of liquids and solutions based on quantum mechanical forces
,”
Adv. Inorg. Chem.
62
,
143
175
(
2010
).
154.
T. S.
Hofer
,
M.
Hitzenberger
, and
B. R.
Randolf
, “
Combining a dissociative water model with a hybrid QM/MM approach—A simulation strategy for the study of proton transfer reactions in solution
,”
J. Chem. Theory Comput.
8
,
3586
3595
(
2012
).
155.
C. N.
Rowley
and
B.
Roux
, “
The solvation structure of Na+ and K+ in liquid water determined from high level ab initio molecular dynamics simulations
,”
J. Chem. Theory Comput.
8
,
3526
3535
(
2012
).
156.
M.
Shiga
and
M.
Masia
, “
Boundary based on exchange symmetry theory for multilevel simulations. II. Multiple time scale approach
,”
J. Chem. Phys.
139
,
144103-1
144103-14
(
2013
).
157.
S.
Pezeshki
and
H.
Lin
, “
Molecular dynamics simulations of ion solvation by flexible-boundary QM/MM: On-the-fly partial charge transfer between QM and MM subsystems
,”
J. Comput. Chem.
35
,
1778
1788
(
2014
).
158.
B. M.
Rode
,
T. S.
Hofer
,
B. R.
Randolf
,
C. F.
Schwenk
,
D.
Xenides
, and
V.
Vchirawongkwin
, “
Ab initio quantum mechanical charge field (QMCF) molecular dynamics: A QM/MM-MD procedure for accurate simulations of ions and complexes
,”
Theor. Chem. Acc.
115
,
77
85
(
2006
).
159.
T. S.
Hofer
,
A. B.
Pribil
,
B. R.
Randolf
, and
B. M.
Rode
, “
Ab initio quantum mechanical charge field molecular dynamics—A nonparametrized first-principle approach to liquids and solutions
,”
Adv. Quantum Chem.
59
,
213
246
(
2010
).
160.
A. W.
Duster
,
C.-H.
Wang
,
C. M.
Garza
,
D. E.
Miller
, and
H.
Lin
, “
Adaptive quantum/molecular mechanics: What have we learned, where are we, and where do we go from here
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
7
,
e1310-1
e1310-21
(
2017
).
161.
A. K. H.
Weiss
and
T. S.
Hofer
, “
Exploiting the capabilities of quantum chemical simulations to characterise the hydration of molecular compounds
,”
RSC Adv.
3
,
1606
1635
(
2013
).
162.
O. M. D.
Lutz
,
C. B.
Messner
,
T. S.
Hofer
,
L. R.
Canaval
,
G. K.
Bonn
, and
C. W.
Huck
, “
Computational vibrational spectroscopy of glycine in aqueous solution—Fundamental considerations towards feasible methodologies
,”
Chem. Phys.
435
,
21
28
(
2014
).
163.
A.
Bhattacharjee
,
A. K. H.
Weiss
,
V.
Artero
,
M. J.
Field
, and
T. S.
Hofer
, “
Electronic structure and hydration of tetramine cobalt hydride complexes
,”
J. Phys. Chem. B
118
,
5551
5561
(
2014
).
164.
T. S.
Hofer
and
A. O.
Tirler
, “
Structure and dynamics of the uranyl tricarbonate complex in aqueous solution: Insights from quantum mechanical charge field molecular dynamics
,”
J. Phys. Chem. B
118
,
12938
12951
(
2014
).
165.
C. B.
Messner
,
G. K.
Bonn
, and
T. S.
Hofer
, “
QM/MM MD simulations of La (III)-phosphopeptide complexes
,”
Mol. BioSyst.
11
,
232
238
(
2014
).
166.
M.
Hitzenberger
and
T. S.
Hofer
, “
The influence of metal-ion binding on the structure and surface composition of Sonic Hedgehog: A combined classical and hybrid QM/MM MD study
,”
Phys. Chem. Chem. Phys.
18
,
22254
22265
(
2016
).
167.
D. R.
Hartree
, “
The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods
,”
Proc. Cambridge Philos. Soc.
24
,
89
110
(
1928
).
168.
V.
Fock
, “
Näherungsmethoden zur Lösung des Quantenmechanischen Mehrkörperproblems
,”
Z. Phys.
61
,
126
148
(
1930
).
169.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
B871
(
1964
).
170.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
171.
C. F.
Schwenk
,
T. S.
Hofer
, and
B. M.
Rode
, “
‘Structure breaking’ effect of hydrated Cs+
,”
J. Phys. Chem. A
108
,
1509
1514
(
2004
).
172.
D.
Xenides
,
B. R.
Randolf
, and
B. M.
Rode
, “
Structure and ultrafast dynamics of liquid water: A quantum mechanics/molecular mechanics molecular dynamics simulations study
,”
J. Chem. Phys.
122
,
174506-1
174506-10
(
2005
).
173.
D.
Xenides
,
B. R.
Randolf
, and
B. M.
Rode
, “
Hydrogen bonding in liquid water: An ab initio QM/MM MD simulation study
,”
J. Mol. Liq.
123
,
61
67
(
2006
).
174.
S.
Yoo
,
X. C.
Zeng
, and
S. S.
Xantheas
, “
On the phase diagram of water with density functional theory potentials: The melting temperature of ice Ih with the Perdew-Burke-Ernzerhof and Becke-Lee-Yang-Parr functionals
,”
J. Chem. Phys.
130
,
221102-1
221102-4
(
2009
).
175.
J.
Schmidt
,
J.
VandeVondele
,
I. F. W.
Kuo
,
D.
Sebastiani
,
J. I.
Siepmann
,
J.
Hutter
, and
C. J.
Mundy
, “
Isobaric-isothermal molecular dynamics simulations utilising density functional theory: An assessment of the structure and density of water at near-ambient conditions
,”
J. Phys. Chem. B
113
,
11959
11964
(
2009
).
176.
M. G.
Medvedev
,
I. S.
Bushmarinov
,
J.
Sun
,
J. P.
Perdew
, and
K. A.
Lyssenko
, “
Density functional theory is straying from the path toward the exact functional
,”
Science
355
,
49
52
(
2017
).
177.
M.
Häser
and
F.
Weigand
, “
RI-MP2: First derivatives and global consistency
,”
Theor. Chem. Acc.
97
,
331
340
(
1997
).
178.
C.
Hättig
,
A.
Hellweg
, and
A.
Köhn
, “
Distributed memory parallel implementation of energies and gradients for second-order Møller-Plesset perturbation theory with the resolution-of-the-identity approximation
,”
Phys. Chem. Chem. Phys.
8
,
1159
1169
(
2006
).
179.
C.
Ochsenfeld
,
J.
Kussmann
, and
D. S.
Lambrecht
, “
Linear-scaling methods in quantum chemistry
, in
Reviews in Computational Chemistry
,
K. B.
Lipkowitz
and
T. R.
Cundari
(
John Wiley & Sons, Inc.
,
Hoboken, NJ, USA
,
2007
), Vol. 23, pp.
1
82
.
180.
Z.
Zhao
,
D. M.
Rogers
, and
T. L.
Beck
, “
Polarization and charge transfer in the hydration of chloride ions
,”
J. Chem. Phys.
132
,
014502-1
014502-10
(
2010
).
181.
L. R.
Canaval
,
O. M. D.
Lutz
,
A. K. H.
Weiss
,
C. W.
Huck
, and
T. S.
Hofer
, “
A dissociative quantum mechanical/molecular mechanical molecular dynamics simulation and infrared experiments reveal characteristics of the strongly hydrolytic arsenic (III)
,”
Inorg. Chem.
53
,
11861
11870
(
2014
).
182.
B.
Lev
,
B.
Roux
, and
S. Y.
Noskov
, “
Relative free energies for hydration of monovalent ions from QM and QM/MM simulations
,”
J. Chem. Theory Comput.
9
,
4165
4175
(
2013
).
183.
N.
Vaidehi
,
T. A.
Wesolowski
, and
A.
Warshel
, “
Quantum-mechanical calculations of solvation free energies. A combined ab initio pseudopotential free-energy perturbation approach
,”
J. Chem. Phys.
97
,
4264
4271
(
1992
).
184.
J. L.
Gao
, “
Absolute free-energy of solvation from Monte Carlo simulations using combined quantum and molecular mechanical potentials
,”
J. Phys. Chem.
96
,
537
540
(
1992
).
185.
R. H.
Wood
and
H.
Dong
, “
Communication: Combining non-Boltzmann sampling with free energy perturbation to calculate free energies of hydration of quantum models from a simulation of an approximate model
,”
J. Chem. Phys.
134
,
101101-1
101101-3
(
2011
).
186.
J.
Heimdal
and
U.
Ryde
, “
Convergence of QM/MM free-energy perturbations based on molecular-mechanics or semiempirical simulations
,”
Phys. Chem. Chem. Phys.
14
,
12592
12604
(
2012
).
187.
F.
Duarte
,
B. A.
Amrein
,
D.
Blaha-Nelson
, and
S. C. L.
Kamerlin
, “
Recent advances in QM/MM free energy calculations using reference potentials
,”
Biochim. Biophys. Acta
1850
,
954
965
(
2015
).
188.
C.
Cave-Ayland
,
C.-K.
Skylaris
, and
J. W.
Essex
, “
Direct validation of the single step classical to quantum free energy perturbation
,”
J. Phys. Chem. B
119
,
1017
1025
(
2015
).
189.
P. S.
Hudson
,
H. L.
Woodcock
, and
S.
Boresch
, “
Use of nonequilibrium work methods to compute free energy differences between molecular mechanical and quantum mechanical representations of molecular systems
,”
J. Phys. Chem. Lett.
6
,
4850
4856
(
2015
).
190.
P. S.
Hudson
,
J. K.
White
,
F. L.
Kearns
,
M.
Hodoscek
,
S.
Boresch
, and
H. L.
Woodcock
, “
Efficiently computing pathway free energies: New approaches based on chain-of-replica and non-Boltzmann Bennett reweighting schemes
,”
Biochim. Biophys. Acta
1850
,
944
953
(
2015
).
191.
L.
Shen
,
J.
Wu
, and
W.
Yang
, “
Multiscale quantum mechanics/molecular mechanics simulations with neural networks
,”
J. Chem. Theory Comput.
12
,
4934
4946
(
2016
).
192.
F. C.
Pickard
 IV
,
G.
König
,
A. C.
Simmonett
,
Y.
Shao
, and
B. R.
Brooks
, “
An efficient protocol for obtaining accurate hydration free energies using quantum chemistry and reweighting from molecular dynamics simulations
,”
Bioorg. Med. Chem.
24
,
4988
4997
(
2016
).
193.
X.
Jia
,
M.
Wang
,
Y.
Shao
,
G.
König
,
B. R.
Brooks
,
J. Z. H.
Zhang
, and
Y.
Mei
, “
Calculations of solvation free energy through energy reweighting from molecular mechanics to quantum mechanics
,”
J. Chem. Theory Comput.
12
,
499
511
(
2016
).
194.
E. C.
Dybeck
,
G.
König
,
B. R.
Brooks
, and
M. R.
Shirts
, “
Comparison of methods to reweight from classical molecular simulations to QM/MM potentials
,”
J. Chem. Theory Comput.
12
,
1466
1480
(
2016
).
195.
N. V.
Plotnikov
,
S. C. L.
Kamerlin
, and
A.
Warshel
, “
Paradynamics: An effective and reliable model for ab initio QM/MM free-energy calculations and related tasks
,”
J. Phys. Chem. B
115
,
7950
7962
(
2011
).
196.
N. V.
Plotnikov
and
A.
Warshel
, “
Exploring, refining, and validating the paradynamics QM/MM sampling
,”
J. Phys. Chem. B
116
,
10342
10356
(
2012
).
197.
N. V.
Plotnikov
, “
Computing the free energy barriers for less by sampling with a coarse reference potential while retaining accuracy of the target fine model
,”
J. Chem. Theory Comput.
10
,
2987
3001
(
2014
).
198.
J.
Lameira
,
I.
Kupchencko
, and
A.
Warshel
, “
Enhancing paradynamics for QM/MM sampling of enzymatic reactions
,”
J. Phys. Chem. B
120
,
2155
2164
(
2016
).
199.
M.
Böckmann
,
N. L.
Doltsinis
, and
D.
Marx
, “
Adaptive switching of interaction potentials in the time domain: An extended Lagrangian approach tailored to transmute force field to QM/MM simulations and back
,”
J. Chem. Theory Comput.
11
,
2429
2439
(
2015
).
200.
E. R.
Pinnick
,
C. E.
Calderon
,
A. J.
Rusnak
, and
F.
Wang
, “
Achieving fast convergence of ab initio free energy perturbation calculations with the adaptive force-matching method
,”
Theor. Chem. Acc.
131
,
1146-1
1146-11
(
2012
).
201.
E. C.
Dybeck
,
N. P.
Schieber
, and
M. R.
Shirts
, “
Effects of a more accurate polarizable Hamiltonian on polymorph free energies computed efficiently by reweighting point-charge potentials
,”
J. Chem. Theory Comput.
12
,
3491
3505
(
2016
).
202.
T. L.
Beck
, “
The influence of water interfacial potentials on ion hydration in bulk water and near interfaces
,”
Chem. Phys. Lett.
561-562
,
1
13
(
2013
).
203.
Y.
Shi
and
T. L.
Beck
, “
Length scales and interfacial potentials in ion hydration
,”
J. Chem. Phys.
139
,
044504-1
044504-10
(
2013
).
204.
L.
Horváth
,
T.
Beu
,
M.
Manghi
, and
J.
Palmeri
, “
The vapor-liquid interface potential of (multi) polar fluids and its influence on ion solvation
,”
J. Chem. Phys.
138
,
154702-1
154702-10
(
2013
).
205.
T.
Simonson
, “
Free energy of particle insertion. An exact analysis of the origin singularity for simple liquids
,”
Mol. Phys.
80
,
441
447
(
1993
).
206.
T. C.
Beutler
,
A. E.
Mark
,
R.
van Schaik
,
P. R.
Gerber
, and
W. F.
van Gunsteren
, “
Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations
,”
Chem. Phys. Lett.
222
,
529
539
(
1994
).
207.
F. P.
Buelens
and
H.
Grubmüller
, “
Linear-scaling soft-core scheme for alchemical free energy calculations
,”
J. Comput. Chem.
33
,
25
33
(
2012
).
208.
V.
Gapsys
,
D.
Seeliger
, and
B. L.
de Groot
, “
New soft-core potential function for molecular dynamics based alchemical free energy calculations
,”
J. Chem. Theory Comput.
8
,
2373
2382
(
2012
).
209.
T. T.
Pham
and
M. R.
Shirts
, “
Optimal pairwise and non-pairwise alchemical pathways for free energy calculations of molecular transformations in solution phase
,”
J. Chem. Phys.
136
,
124120-1
124120-14
(
2012
).
210.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
, “
The missing term in effective pair potentials
,”
J. Phys. Chem.
91
,
6269
6271
(
1987
).
211.
J. A.
Barker
and
R. O.
Watts
, “
Monte Carlo studies of the dielectric properties of water-like models
,”
Mol. Phys.
26
,
789
792
(
1973
).
212.
I. G.
Tironi
,
R.
Sperb
,
P. E.
Smith
, and
W. F.
van Gunsteren
, “
A generalized reaction field method for molecular dynamics simulations
,”
J. Chem. Phys.
102
,
5451
5459
(
1995
).
213.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
,
3297
3305
(
2005
).
214.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
, “
Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules
,”
J. Chem. Phys.
56
,
2257
2261
(
1972
).
215.
P. C.
Hariharan
and
J. A.
Pople
, “
The influence of polarization functions on molecular orbital hydrogenation energies
,”
Theor. Chim. Acta
28
,
213
222
(
1973
).
216.
T.
Kerdcharoen
and
K.
Morokuma
, “
ONIOM-XS: An extension of the ONIOM method for molecular simulation in condensed phase
,”
Chem. Phys. Lett.
355
,
257
262
(
2002
).
217.
R. S.
Mulliken
, “
Electronic population analysis on LCAO-MO molecular wave functions. I
,”
J. Chem. Phys.
23
,
1833
1840
(
1955
).
218.
R. S.
Mulliken
, “
Electronic population analysis on LCAO-MO molecular wave functions. II
,”
J. Chem. Phys.
23
,
1841
1846
(
1955
).
219.
S. S.
Azam
,
T. S.
Hofer
,
B. R.
Randolf
, and
B. M.
Rode
, “
Hydration of sodium (I) and potassium (I) revisited: A comparative QM/MM and QMCF MD simulation study of weakly hydrated ions
,”
J. Phys. Chem. A
113
,
1827
1834
(
2009
).
220.
P. H.
Hünenberger
and
W. F.
van Gunsteren
, “
Alternative schemes for the inclusion of a reaction-field correction into molecular dynamics simulations: Influence on the simulated energetic, structural, and dielectric properties of liquid water
,”
J. Chem. Phys.
108
,
6117
6134
(
1998
).
221.
N. A.
Baker
,
P. H.
Hünenberger
, and
J. A.
McCammon
, “
Polarization around an ion in a dielectric continuum with truncated electrostatic interactions
,”
J. Chem. Phys.
110
,
10679
10692
(
1999
).
222.
M.
Bergdorf
,
C.
Peter
, and
P. H.
Hünenberger
, “
Influence of cutoff truncation and artificial periodicity of electrostatic interactions in molecular simulations of solvated ions: A continuum electrostatics study
,”
J. Chem. Phys.
119
,
9129
9144
(
2003
).
223.
C.
Peter
,
W. F.
van Gunsteren
, and
P. H.
Hünenberger
, “
A fast-Fourier-transform method to solve continuum-electrostatics problems with truncated electrostatic interactions: Algorithm and application to ionic solvation and ion-ion interaction
,”
J. Chem. Phys.
119
,
12205
12223
(
2003
).
224.
A.
Ben-Naim
, “
Standard thermodynamics of transfer. Uses and misuses
,”
J. Phys. Chem.
82
,
792
803
(
1978
).
225.
J. E.
Bartmess
, “
Thermodynamics of the electron and the proton
,”
J. Phys. Chem.
98
,
6420
6424
(
1994
).
226.
T. S.
Hofer
,
B. R.
Randolf
, and
B. M.
Rode
, “
Molecular dynamics simulation methods including quantum effects
,” in
Solvation Effects on Molecules and Biomolecules
, edited by
S.
Canuto
(
Springer
,
Heidelberg, Germany
,
2008
), Vol. 3, pp.
247
278
.
227.
T. S.
Hofer
, “
Perspectives for hybrid ab initio/molecular mechanical simulations of solutions: From complex chemistry to proton-transfer reactions and interfaces
,”
Pure Appl. Chem.
86
,
105
117
(
2014
).
228.
TURBOMOLE V6.5 2013, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH (1989-2007) TURBOMOLE GmbH (since 2007), available at: http://www.turbomole.com, 2013.
229.
F.
Furche
,
R.
Ahlrichs
,
C.
Hättig
,
W.
Klopper
,
M.
Sierka
, and
F.
Weigend
, “
Turbomole
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
91
100
(
2014
).
230.
W. C.
Swope
,
H. C.
Andersen
,
P. H.
Berens
, and
K. R.
Wilson
, “
A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters
,”
J. Chem. Phys.
76
,
637
649
(
1982
).
231.
V.
Kräutler
,
W. F.
van Gunsteren
, and
P. H.
Hünenberger
, “
A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations
,”
J. Comput. Chem.
22
,
501
508
(
2001
).
232.
H. W.
Horn
,
W. C.
Swope
,
J. W.
Pitera
,
J. D.
Madura
,
T. J.
Dick
,
G. L.
Hura
, and
T.
Head-Gordon
, “
Development of an improved four-site water model for biomolecular simulations: TIP4PEW
,”
J. Chem. Phys.
120
,
9665
9678
(
2004
).
233.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
di Nola
, and
J. R.
Haak
, “
Molecular dynamics with coupling to an external bath
,”
J. Chem. Phys.
81
,
3684
3690
(
1984
).
234.
G. S.
Kell
, “
Precise representation of volume properties of water at one atmosphere
,”
J. Chem. Eng. Data
12
,
66
69
(
1967
).
235.
C. J.
Fennell
,
L.
Li
, and
K. A.
Dill
, “
Simple liquid models with corrected dielectric constants
,”
J. Phys. Chem. B
116
,
6936
6944
(
2012
).
236.
H.
Reiss
, “
The absolute electrode potential. Tying the loose ends
,”
J. Electrochem. Soc.
135
,
247C
258C
(
1988
).
237.
I. M.
Svishchev
and
P. G.
Kusalik
, “
Dynamics in liquid H2O, D2O, and T2O: A comparative simulation study
,”
J. Phys. Chem.
98
,
728
733
(
1994
).
238.
C.
Vega
and
J. L. F.
Abascal
, “
Simulating water with rigid non-polarizable models: A general perspective
,”
Phys. Chem. Chem. Phys.
13
,
19663
19688
(
2011
).
239.
F.
Martin
and
H.
Zipse
, “
Charge distribution in the water molecule. A comparison of methods
,”
J. Comput. Chem.
26
,
97
105
(
2005
).
240.
W. D.
Cornell
,
P.
Cieplak
,
C. I.
Bayly
,
I. R.
Gould
,
K. M.
Merz
,
D. M.
Ferguson
,
D. C.
Spellmeyer
,
T.
Fox
,
J. W.
Caldwell
, and
P. A.
Kollman
, “
A second generation force field for the simulation of proteins, nucleic acids and organic molecules
,”
J. Am. Chem. Soc.
117
,
5179
5197
(
1995
).
241.
J. M.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
,
P. A.
Kollman
, and
D. A.
Case
, “
Development and testing of a general Amber force field
,”
J. Comput. Chem.
25
,
1157
1174
(
2004
).
242.
K.
Vanommeslaeghe
,
E.
Hatcher
,
C.
Acharya
,
S.
Kundu
,
S.
Zhong
,
J.
Shim
,
E.
Darian
,
O.
Guvench
,
P.
Lopes
,
I.
Vorobyov
, and
A. D.
McKerell
, Jr.
, “
CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields
,”
J. Comput. Chem.
31
,
671
690
(
2010
).
243.
A. D.
MacKerell
, Jr.
,
D.
Bashford
,
M.
Bellott
,
R. L.
Dunbrack
,
J. D.
Evanseck
,
M. J.
Field
,
S.
Fischer
,
J.
Gao
,
H.
Guo
,
S.
Ha
,
D.
Joseph-McCarthy
,
L.
Kuchnir
,
K.
Kuczera
,
F. T. K.
Lau
,
C.
Mattos
,
S.
Michnick
,
T.
Ngo
,
D. T.
Nguyen
,
B.
Prodhom
,
W. E.
Reiher
,
B.
Roux
,
M.
Schlenkrich
,
J. C.
Smith
,
R.
Stote
,
J.
Straub
,
M.
Watanabe
,
J.
Wiorkiewicz-Kuczera
,
D.
Yin
, and
M.
Karplus
, “
All-atom empirical potential for molecular modeling and dynamics studies of proteins
,”
J. Phys. Chem. B
102
,
3586
3616
(
1998
).
244.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
, “
Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids
,”
J. Am. Chem. Soc.
118
,
11225
11236
(
1996
).
245.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
,
926
935
(
1983
).
246.
U. C.
Singh
and
P. A.
Kollman
, “
An approach to computing electrostatic charges for molecules
,”
J. Comput. Chem.
5
,
129
145
(
1984
).
247.
L. E.
Chirlian
and
M. M.
Francl
, “
Atomic charges derived from electrostatic potentials: A detailed study
,”
J. Comput. Chem.
8
,
894
905
(
1987
).
248.
B. H.
Besler
,
K. M.
Merz
, Jr.
, and
P. A.
Kollman
,
Atomic charges derived from semiempirical methods
,
J. Comput. Chem.
11
,
431
439
(
1990
).
249.
C. M.
Breneman
and
K. B.
Wilberg
, “
Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis
,”
J. Comput. Chem.
11
,
361
373
(
1990
).
250.
A. E.
Reed
,
R. B.
Weinstock
, and
F.
Weinhold
, “
Natural population analysis
,”
J. Chem. Phys.
83
,
735
746
(
1985
).
251.
R. F. W.
Bader
,
Atoms in Molecules: A Quantum Theory
(
Clarendon Press
,
Oxford
,
1993
).
252.
M. M.
Francl
,
C.
Carey
,
L. E.
Chirlian
, and
D. M.
Gange
, “
Charges fit to electrostatic potentials. II. Can atomic charges be unambiguously fit to electrostatic potentials
,”
J. Comput. Chem.
17
,
367
383
(
1996
).
253.
J.
Rigby
and
E. I.
Izgorodina
, “
Assessment of atomic partial charge schemes for polarisation and charge transfer effects in ionic liquids
,”
Phys. Chem. Chem. Phys.
15
,
1632
1646
(
2013
).
254.
W. R.
Wadt
and
P. J.
Hay
, “
Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi
,”
J. Chem. Phys.
82
,
284
298
(
1985
).
255.
P. J.
Hay
and
W. R.
Wadt
, “
Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals
,”
J. Chem. Phys.
82
,
299
310
(
1985
).
256.
K.
Eichkorn
,
F.
Weigend
,
O.
Treutler
, and
R.
Ahlrichs
, “
Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials
,”
Theor. Chem. Acc.
97
,
119
124
(
1997
).
257.
F.
Weigend
,
M.
Haser
,
H.
Patzelt
, and
R.
Ahlrichs
, “
RI-MP2: Optimized auxiliary basis sets and demonstration of efficiency
,”
Chem. Phys. Lett.
294
,
143
152
(
1998
).
258.
R. A.
DiStasio
, Jr.
,
R. P.
Steele
,
Y. M.
Rhee
,
Y.
Shao
, and
M.
Head-Gordon
, “
An improved algorithm for analytical gradient evaluation in resolution-of-the-identity second-order Møller-Plesset perturbation theory: Application to alanine tetrapeptide conformational analysis
,”
J. Comput. Chem.
28
,
839
856
(
2007
).
259.
B.
Doser
,
J.
Zienau
,
L.
Clin
,
D. S.
Lambrecht
, and
C.
Ochsenfeld
, “
A linear-scaling MP2 method for large molecules by rigorous integral-screening criteria
,”
Z. Phys. Chem.
224
,
397
412
(
2010
).
260.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
(
National Bureau of Standards
,
Washington
,
1972
).
261.
J. R.
Taylor
,
An Introduction to Error Analysis—The Study of Uncertainties in Physical Measurements
, 2nd ed. (
University Science Books
,
Sausalito, CA, USA
,
1997
).
262.
M.
Lawrenz
,
R.
Baron
, and
J. A.
McCammon
, “
Independent-trajectories thermodynamic-integration free-energy changes for biomolecular systems: Determinants of H5N1 avian influenza virus neuraminidase inhibition by peramivir
,”
J. Chem. Theory Comput.
5
,
1106
1116
(
2009
).
263.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
New York, USA
,
1987
).
264.
H.
Flyvbjerg
and
H. G.
Petersen
, “
Error estimates on averages of correlated data
,”
J. Chem. Phys.
91
,
461
466
(
1989
).
265.
P.
Li
,
B. P.
Roberts
,
D. K.
Chakravorty
, and
K. M.
Merz
, Jr.
, “
Rational design of particle mesh Ewald compatible Lennard-Jones parameters for +2 metal cations in explicit solvent
,”
J. Chem. Theory Comput.
9
,
2733
2748
(
2013
).
266.
I. S.
Lim
,
J. K.
Laerdahl
, and
P.
Schwerdtfeger
, “
Fully relativistic coupled-cluster static dipole polarizabilities of the positively charged alkali ions from Li+ to 119+
,”
J. Chem. Phys.
116
,
172
178
(
2002
).
267.
J. C.
Slater
and
J. G.
Kirkwood
, “
The van der Waals forces in gases
,”
Phys. Rev.
37
,
682
697
(
1931
).
268.
V.
Migliorati
,
F.
Sessa
,
G.
Aquilanti
, and
P.
D’Angelo
, “
Unraveling halide hydration: A high dilution approach
,”
J. Chem. Phys.
141
,
044509-1
044509-11
(
2014
).
269.
N. T.
Skipper
and
G. W.
Neilson
, “
X-ray and neutron diffraction studies on concentrated aqueous solutions of sodium nitrate and silver nitrate
,”
J. Phys.: Condens. Matter
1
,
4141
4154
(
1989
).
270.
A. K.
Soper
and
K.
Weckström
, “
Ion solvation and water structure in potassium halide aqueous solutions
,”
Biophys. Chem.
124
,
180
191
(
2006
).
271.
J. M.
Boereboom
,
R.
Potestio
,
D.
Donadio
, and
R. E.
Bulo
, “
Toward Hamiltonian adaptive QM/MM: Accurate solvent structures using many-body potentials
,”
J. Chem. Theory Comput.
12
,
3441
3448
(
2016
).
272.
T. S.
Hofer
,
H. T.
Tran
,
C. F.
Schwenk
, and
B. M.
Rode
, “
Characterization of dynamics and reactivities of solvated ions by ab initio simulations
,”
J. Comput. Chem.
25
,
211
217
(
2004
).
273.
A.
Tongraar
,
K. R.
Liedl
, and
B. M.
Rode
, “
Born-Oppenheimer ab initio QM/MM dynamics simulations of Na+ and K+ in water: From structure making to structure breaking effects
,”
J. Phys. Chem. A
102
,
10340
10347
(
1998
).
274.
T. S.
Hofer
,
B. R.
Randolf
, and
B. M.
Rode
, “
Structure-breaking effects of solvated Rb (I) in dilute aqueous solution—An ab initio QM/MM MD approach
,”
J. Comput. Chem.
26
,
949
956
(
2005
).
275.
Y.
Marcus
, “
Effects of ions on the structure of water: Structure making and breaking
,”
Chem. Rev.
109
,
1346
1370
(
2009
).
276.
A.
Bhattacharjee
,
T. S.
Hofer
, and
B. M.
Rode
, “
Local density corrected three-body distribution functions for probing local structure reorganization in liquids
,”
Phys. Chem. Chem. Phys.
10
,
6653
6657
(
2008
).
277.
M.
Dal Peraro
,
S.
Raugei
,
P.
Carloni
, and
M. L.
Klein
, “
Solute-solvent charge transfer in aqueous solution
,”
Chem. Phys. Chem.
6
,
1715
1718
(
2005
).
278.
M.
Soniat
and
S. W.
Rick
, “
The effects of charge transfer on the aqueous solvation of ions
,”
J. Chem. Phys.
137
,
044511-1
044511-9
(
2012
).
279.
S.
Falcinelli
,
P.
Candori
,
F.
Pirani
, and
F.
Vecchiocattivi
, “
The role of charge transfer in the stability of chemical systems from experimental findings
,”
Phys. Chem. Chem. Phys.
19
,
6933
6944
(
2017
).
280.
M.
Soniat
,
L.
Hartman
, and
S. W.
Rick
, “
Charge transfer models of zinc and magnesium in water
,”
J. Chem. Theory Comput.
11
,
1658
1667
(
2015
).
281.
M.
Soniat
,
G.
Pool
,
L.
Franklin
, and
S. W.
Rick
, “
Ion association in aqueous solution
,”
Fluid Phase Equilib.
407
,
31
38
(
2016
).
282.
T. R.
Rogers
and
F.
Wang
, “
Performing the Millikan experiment at the molecular scale: Determination of atomic Millikan-Thomson charges by computationally measuring atomic forces
,”
J. Chem. Phys.
147
,
161726-1
161726-8
(
2017
).
283.
M.
Ahmed
,
A. K.
Singh
,
J. A.
Mondal
, and
S. K.
Sarkar
, “
Water in the hydration shell of halide ions has significantly reduced Fermi resonance and moderately enhanced Raman cross section in the OH stretch regions
,”
J. Phys. Chem. B
117
,
9728
9733
(
2013
).
284.
A. J.
Lee
and
S. W.
Rick
, “
The effects of charge transfer on the properties of liquid water
,”
J. Chem. Phys.
134
,
184507-1
184507-9
(
2011
).
285.
I. V.
Leontyev
and
A. A.
Stuchebrukhov
, “
Electronic continuum model for molecular dynamics simulations
,”
J. Chem. Phys.
130
,
085102-1
085102-8
(
2009
).
286.
I. V.
Leontyev
and
A. A.
Stuchebrukhov
, “
Electronic polarizability and the effective pair potentials of water
,”
J. Chem. Theory Comput.
6
,
3153
3161
(
2010
).
287.
I. V.
Leontyev
and
A. A.
Stuchebrukhov
, “
Accounting for electronic polarization in non-polarizable force fields
,”
Phys. Chem. Chem. Phys.
13
,
2613
2626
(
2011
).
288.
M.
Kohagen
,
E.
Pluhařová
,
P. E.
Mason
, and
P.
Jungwirth
, “
Exploring ion-ion interactions in aqueous solutions by a combination of molecular dynamics and neutron scattering
,”
J. Phys. Chem. Lett.
6
,
1563
1567
(
2015
).
289.
J.
Åqvist
and
A.
Warshel
, “
Free energy relationships in metalloenzyme-catalyzed reactions. Calculations of the effects of metal ion substitutions in staphylococcal nuclease
,”
J. Am. Chem. Soc.
112
,
2860
2868
(
1990
).
290.
Y.-P.
Pang
,
K.
Xu
,
J.
El Yazal
, and
F. G.
Prendergast
, “
Successful molecular dynamics simulation of the zinc-bound farnesyltransferase using the cationic dummy atom approach
,”
Protein Sci.
9
,
1857
1865
(
2000
).
291.
A.
Saxena
and
D.
Sept
, “
Multisite ion models that improve the coordination and free energy calculations in molecular dynamics simulations
,”
J. Chem. Theory Comput.
9
,
3538
3542
(
2013
).
292.
F.
Duarte
,
P.
Bauer
,
A.
Barrozo
,
B. A.
Amrein
,
M.
Purg
,
J.
Åqvist
, and
S. C. L.
Kamerlin
, “
Force field independent metal parameters using a nonbonded dummy model
,”
J. Phys. Chem. B
118
,
4351
4362
(
2014
).
293.
Q.
Liao
,
S. C. L.
Kamerlin
, and
B.
Strodel
, “
Development and application of a nonbonded Cu2+ model that includes the Jahn-Teller effect
,”
J. Phys. Chem. Lett.
6
,
2657
2662
(
2015
).
294.
F.
Sessa
,
P.
D’Angelo
,
L.
Guidoni
, and
V.
Migliorati
, “
Hidden hydration structure of halide ions: An insight into the importance of lone pairs
,”
J. Phys. Chem. B
119
,
15729
15737
(
2015
).
295.
Y.
Jiang
,
H.
Zhang
, and
T.
Tan
, “
Rational design of methodology-independent metal parameters using a nonbonded dummy model
,”
J. Chem. Theory Comput.
12
,
3250
3260
(
2016
).
296.
Y.
Wu
,
H. L.
Tepper
, and
G. A.
Voth
, “
Flexible simple point-charge water model with improved liquid-state properties
,”
J. Chem. Phys.
124
,
024503-1
024503-12
(
2006
).
297.
L. S.
Pedroza
and
A. J. R.
da Silva
, “
Adiabatic intramolecular movements for water systems
,”
J. Chem. Phys.
128
,
104311-1
104311-5
(
2008
).
298.
H.
Ma
, “
Hydration structure of Na+, K+, F, and Cl in ambient and supercritical water: A quantum mechanics/molecular mechanics study
,”
Int. J. Quantum Chem.
114
,
1006
1011
(
2014
).
299.
L.
Vlcek
,
F.
Uhlik
,
F.
Moucka
,
I.
Nezbeda
, and
A. A.
Chialvo
, “
Thermodynamics of small alkali metal halide cluster ions: Comparison of classical molecular simulations with experiment and quantum chemistry
,”
J. Phys. Chem. A
119
,
488
500
(
2015
).
300.
M.
Antalek
,
E.
Pace
,
B.
Hedman
,
K. O.
Hodgson
,
G.
Chillemi
,
M.
Benfatto
,
R.
Sarangi
, and
P.
Frank
, “
Solvation structure of the halides from x-ray absorption spectroscopy
,”
J. Chem. Phys.
145
,
044318-1
044318-15
(
2016
).
301.
F.
Réal
,
A. S. P.
Gomes
,
Y. O. G.
Martínez
,
T.
Ayed
,
N.
Galland
,
M.
Masella
, and
V.
Vallet
, “
Structural, dynamical, and transport properties of the hydrated halides: How do At bulk properties compare with those of the other halides, from F to I
,”
J. Chem. Phys.
144
,
124513-1
124513-12
(
2016
).
302.
D.
Saha
and
A.
Mukherjee
, “
Impact of ions on individual water entropy
,”
J. Phys. Chem. B
120
,
7471
7479
(
2016
).
303.
D. M.
Wilkins
,
D. E.
Manolopoulos
, and
L. X.
Dang
, “
Nuclear quantum effects in water exchange around lithium and fluoride ions
,”
J. Chem. Phys.
142
,
064509-1
064509-11
(
2015
).
304.
M.
Ceriotti
,
W.
Fang
,
P. G.
Kusalik
,
R. H.
McKenzie
,
A.
Michaelides
,
M. A.
Morales
, and
T. E.
Markland
, “
Nuclear quantum effects in water and aqueous systems: Experiment, theory, and current challenges
,”
Chem. Rev.
116
,
7529
7550
(
2016
).
305.
C.
Schran
,
O.
Marsalek
, and
T. E.
Markland
, “
Unravelling the influence of quantum proton delocalization on electronic charge transfer through the hydrogen bond
,”
Chem. Phys. Lett.
678
,
289
295
(
2017
).
306.
O.
Marsalek
and
T. E.
Markland
, “
Quantum dynamics and spectroscopy of ab initio liquid water: The interplay of nuclear and electronic quantum effects
,”
J. Phys. Chem. Lett.
8
,
1545
1551
(
2017
).
307.
V. V.
Rybkin
and
J.
VandeVondele
, “
Nuclear quantum effects on aqueous electron attachment and redox properties
,”
J. Phys. Chem. Lett.
8
,
1424
1428
(
2017
).
308.
M.
Allesch
,
E.
Schwegler
,
F.
Gygi
, and
G.
Galli
, “
A first principles simulation of rigid water
,”
J. Chem. Phys.
120
,
5192
5198
(
2004
).
309.
H.
Saint-Martin
,
J.
Hernández-Cobos
, and
I.
Ortega-Blake
, “
Water models based on a single potential energy surface and different molecular degrees of freedom
,”
J. Chem. Phys.
122
,
224509-1
224509-12
(
2005
).
310.
K.
Leung
and
S. B.
Rempe
, “
Ab initio rigid water: Effect on water structure, ion hydration, and thermodynamics
,”
Phys. Chem. Chem. Phys.
8
,
2153
2162
(
2006
).
311.
T.
Helgaker
and
P.
Jørgensen
,
Molecular Electronic-Structure Theory
(
John Wiley & Sons Ltd.
,
Chichester
,
2000
).
312.
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
313.
C. F.
Schwenk
and
B. M.
Rode
, “
Extended ab initio quantum mechanical/molecular mechanical molecular dynamics simulations of hydrated Cu2+
,”
J. Chem. Phys.
119
,
9523
9531
(
2003
).
314.
M. Q.
Fatmi
,
T. S.
Hofer
,
B. R.
Randolf
, and
B. M.
Rode
, “
An extended ab initio QM/MM MD approach to structure and dynamics of Zn (II) in aqueous solution
,”
J. Chem. Phys.
123
,
054514-1
054514-8
(
2005
).
315.
T. S.
Hofer
,
B. R.
Randolf
, and
B. M.
Rode
, “
Influence of polarization and many body quantum effects on the solvation shell of Al (III) in dilute aqueous solution-extended ab initio QM/MM MD simulations
,”
Phys. Chem. Chem. Phys.
7
,
1382
1387
(
2005
).
316.
E. G.
Scuseria
, “
Linear scaling density functional calculations with Gaussian orbitals
,”
J. Phys. Chem. A
103
,
4782
4790
(
1999
).
317.
M.
Govoni
and
G.
Galli
, “
Large scale GW calculations
,”
J. Chem. Theory Comput.
11
,
2680
2696
(
2015
).
318.
V. V.
Rybkin
and
J.
VandeVondele
, “
Spin-unrestricted second-order Møller-Plesset (MP2) forces for the condensed phase: From molecular radicals to F-centers in solids
,”
J. Chem. Theory Comput.
12
,
2214
2223
(
2016
).
319.
C.
Haycraft
,
J.
Li
, and
S. S.
Iyengar
, “
Efficient, ‘on-the-fly,’ Born-Oppenheimer and Car-Parrinello-type dynamics with coupled cluster accuracy through fragment based electronic structure
,”
J. Chem. Theory Comput.
13
,
1887
1901
(
2012
).
320.
I. S.
Ufimtsev
and
T. J.
Martinez
, “
Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics
,”
J. Chem. Theory Comput.
5
,
2619
2628
(
2009
).
321.
M.
Watson
,
R.
Olivares-Amaya
,
R. G.
Edgar
, and
A.
Aspuru-Guzik
, “
Accelerating correlated quantum chemistry calculations using graphical processing units
,”
Comput. Sci. Eng.
12
,
40
51
(
2010
).
322.
Z.
Marković
,
J.
Tošović
,
D.
Milenković
, and
S.
Marković
, “
Revisiting the solvation enthalpies and free energies of the proton and electron in various solvents
,”
Comput. Theor. Chem.
1077
,
11
17
(
2016
).
323.
H.
Farrokhpour
and
M.
Manassir
, “
A simple method for estimating the absolute solvation free energy of monovalent ions in different solvents
,”
J. Phys. Chem. A
119
,
160
171
(
2015
).
324.
E.
Rossini
,
R. R.
Netz
, and
E.-W.
Knapp
, “
Computing pKa values in different solvents by electrostatic transformation
,”
J. Chem. Theory Comput.
12
,
3360
3369
(
2016
).
325.
A. M.
Tabrizi
,
S.
Goossens
,
A. M.
Rahimi
,
M.
Knepley
, and
J. P.
Bardhan
, “
Predicting solvation free energies and thermodynamics in polar solvents and mixtures using a solvation-layer interface condition
,”
J. Chem. Phys.
146
,
094103-1
094103-12
(
2017
).
326.
Y. N.
Vorobjev
and
J.
Hermans
, “
A critical analysis of methods of calculation of a potential in simulated polar liquids: Strong arguments in favor of ‘molecule-based’ summation and of vacuum boundary conditions in Ewald summations
,”
J. Phys. Chem. B
103
,
10234
10242
(
1999
).
327.
J.
Mähler
and
I.
Persson
, “
A study of the hydration of the alkali metal ions in aqueous solution
,”
Inorg. Chem.
51
,
425
438
(
2012
).
328.
M.
Galib
,
M. D.
Baer
,
L. B.
Skinner
,
C. J.
Mundy
,
T.
Huthwelker
,
G. K.
Schenter
,
C. J.
Benmore
,
N.
Govind
, and
J. L.
Fulton
, “
Revisiting the hydration structure of aqueous Na+
,”
J. Chem. Phys.
146
,
084504-1
084504-13
(
2017
).
329.
V.-A.
Glezakou
,
Y.
Chen
,
J. L.
Fulton
,
G. K.
Schenter
, and
L. X.
Dang
, “
Electronic structure, statistical mechanical simulations, and EXAFS spectroscopy of aqueous potassium
,”
Theor. Chem. Acc.
115
,
86
99
(
2006
).
330.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics (Internet Version)
, 88 ed. (
CRC Press
,
Boca Raton, Florida
,
2008
).
331.
A. J.
de Bethune
,
T. S.
Licht
, and
N.
Swendeman
, “
The temperature coefficients of electrode potentials. The isothermal and thermal coefficients—The standard ionic entropy of electrochemical transport of the hydrogen ion
,”
J. Electrochem. Soc.
106
,
616
625
(
1959
).
332.
G. R.
Salvi
and
A. J.
de Bethune
, “
The temperature coefficients of electrode potentials. 2. The second isothermal temperature coefficient
,”
J. Electrochem. Soc.
108
,
672
676
(
1961
).

Supplementary Material

You do not currently have access to this content.