Molecular dynamics (MD) simulations of KCl, NaCl, and CaCl2 solution/dipalmytoylphosphatidylcholine lipid interfaces were performed to analyze heterodyne-detected vibrational sum frequency generation (HD-VSFG) spectra in relation to the interfacial water structure. The present MD simulation well reproduces the experimental spectra and elucidates a specific cation effect on the interfacial structure. The K+, Na+, and Ca2+ cation species penetrate in the lipid layer more than the anions in this order, due to the electrostatic interaction with negative polar groups of lipid, and the electric double layer between the cations and anions cancels the intrinsic orientation of water at the water/lipid interface. These mechanisms explain the HD-VSFG spectrum of the water/lipid interface and its spectral perturbation by adding the ions. The lipid monolayer reverses the order of surface preference of the cations at the solution/lipid interface from that at the solution/air interface.

1.
S.
Garcia-Manyes
,
G.
Oncins
, and
F.
Sanz
, “
Effect of ion-binding and chemical phospholipid structure on the nanomechanics of lipid bilayers studied by force spectroscopy
,”
Biophys. J.
89
,
1812
(
2005
).
2.
M.
Boström
,
D. R. M.
Williams
,
P. R.
Stewart
, and
B. W.
Ninham
, “
Hofmeister effects in membrane biology: The role of ionic dispersion potentials
,”
Phys. Rev. E
68
,
041902
(
2003
).
3.
J.
Yang
,
C.
Calero
,
M.
Bonomi
, and
J.
Marti
, “
Specific ion binding at phospholipid membrane surfaces
,”
J. Chem. Theory Comput.
11
,
4495
(
2015
).
4.
J. A.
Szule
,
S. E.
Jarvis
,
J. E.
Hibbert
,
J. D.
Spafford
,
J. E. A.
Braun
,
G. W.
Zamponi
,
G. M.
Wessel
, and
J. R.
Coorssen
, “
Calcium-triggered membrane fusion proceeds independently of specific presynaptic proteins
,”
J. Biol. Chem.
278
,
24251
(
2003
).
5.
D.
Eckert
and
P.
Kim
, “
Mechanisms of viral membrane fusion and its inhibition
,”
Annu. Rev. Biochem.
70
,
777
(
2001
).
6.
Y.
Chen
and
R.
Scheller
, “
Snare-mediated membrane fusion
,”
Nat. Rev. Mol. Cell. Biol.
2
,
98
(
2001
).
7.
J. J.
McManus
,
J. O.
Rädler
, and
K. A.
Dawson
, “
Observation of a rectangular columnar phase in a DNA- calcium- zwitterionic lipid complex
,”
J. Am. Chem. Soc.
126
,
15966
(
2004
).
8.
J. O.
Rädler
,
I.
Koltover
,
T.
Salditt
,
C. R.
Safinya
,
A.
Jamieson
,
T.
Salditt
, and
C. R.
Safinya
, “
Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes
,”
Science
275
,
810
(
1994
).
9.
B.
Pitard
,
O.
Aguerre
,
M.
Airiau M
,
A.
Lachages
,
T.
Boukhnikachvili
,
G.
Byk
,
C.
Dubertret
,
C.
Herviou
,
D.
Scherman
,
J.
Mayaux
 et al., “
Virus-sized self-assembling lamellar complexes between plasmid DNA and cationic micelles promote gene transfer
,”
Proc. Natl. Acad. Sci. U. S. A.
94
,
14412
(
1997
).
10.
P.
Pinton
,
C.
Giorgi
,
R.
Siviero
,
E.
Zecchini
, and
R.
Rizzuto
, “
Calcium and apoptosis: Er-mitochondria Ca2+ transfer in the control of apoptosis
,”
Oncogene
27
,
6407
(
2008
).
11.
J. H.
Lin
,
N. A.
Baker
, and
J. A.
McCammon
, “
Bridging implicit and explicit solvent approaches for membrane electrostatics
,”
Biophys. J.
83
,
1374
(
2002
).
12.
A. A.
Gurtovenko
and
I.
Vattulainen
, “
Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: Insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane
,”
J. Phys. Chem. B
112
,
1953
(
2008
).
13.
S. J.
Lee
,
Y.
Song
, and
N. A.
Baker
, “
Molecular dynamics simulations of asymmetric NaCl and KCl solutions separated by phosphatidylcholine bilayers: Potential drops and structural changes induced by strong Na+-lipid interactions and finite size effects
,”
Biophys. J.
94
,
3565
(
2008
).
14.
I.
Gambu
and
B.
Roux
, “
Interaction of K+ with a phospholipid bilayer: A molecular dynamics study
,”
J. Phys. Chem. B
101
,
6066
(
1997
).
15.
R. A.
Böckmann
,
A.
Hac
,
T.
Heimburg
, and
H.
Grubmüller
, “
Effect of sodium chloride on a lipid bilayer
,”
Biophys. J.
85
,
1647
(
2003
).
16.
R.
Böckmann
and
H.
Grubmüller
, “
Multistep binding of divalent cations to phospholipid bilayers: A molecular dynamics study
,”
Angew. Chem., Int. Ed.
43
,
1021
(
2004
).
17.
A.
Melcrova
,
S.
Pokorna
,
S.
Pullanchery
,
M.
Kohagen
,
P.
Jurkiewicz
,
M.
Hov
,
P.
Jungwirth
,
P. S.
Cremer
, and
L.
Cwiklik
, “
The complex nature of calcium cation interactions with phospholipid bilayers
,”
Sci. Rep.
6
,
38035
(
2016
).
18.
M. L.
Berkowitz
,
D. L.
Bostick
, and
S.
Pandit
, “
Aqueous solutions next to phospholipid membrane surfaces: Insights from simulations
,”
Chem. Rev.
106
,
1527
(
2006
).
19.
A.
Cordomi
,
O.
Edholm
, and
J. J.
Perez
, “
Effect of ions on a dipalmitoyl phosphatidylcholine bilayer. A molecular dynamics simulation study
,”
J. Phys. Chem. B
112
,
1397
(
2008
).
20.
S. A.
Pandit
,
D.
Bostick
, and
M. L.
Berkowitz
, “
Mixed bilayer containing dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylserine: Lipid complexation, ion binding, and electrostatics
,”
Biophys. J.
85
,
3120
(
2003
).
21.
J. N.
Sachs
,
H.
Nanda
,
H. I.
Petrache
, and
T. B.
Woolf
, “
Changes in phosphatidylcholine headgroup tilt and water order induced by monovalent salts: Molecular dynamics simulations
,”
Biophys. J.
86
,
3772
(
2004
).
22.
T.
Ishiyama
,
T.
Imamura
, and
A.
Morita
, “
Theoretical studies of structures and vibrational sum frequency generation spectra at aqueous interfaces
,”
Chem. Rev.
114
,
8447
(
2014
).
23.
F.
Perakis
,
L. D.
Marco
,
A.
Shalit
,
F.
Tang
,
Z. R.
Kann
,
T. D.
Kühne
,
R.
Torre
,
M.
Bonn
, and
Y.
Nagata
, “
Vibrational spectroscopy and dynamics of water
,”
Chem. Rev.
116
,
7590
(
2016
).
24.
P. M.
Macdonald
and
J.
Seelig
, “
Calcium binding to mixed phosphatidylglycerol-phosphatidylcholine bilayers as studied by deuterium nuclear magnetic resonance
,”
Biochemistry
26
,
1231
(
1987
).
25.
M.
Roux
and
M.
Bloom
, “
Ca2+, Mg2+, Li+, Na+, and K+ distributions in the headgroup region of binary membranes of phosphatidylcholine and phosphatidylserine as seen by deuterium NMR
,”
Biochemistry
29
,
7077
(
1990
).
26.
L.
Herbette
,
C.
Napolitano
, and
R.
McDaniel
, “
Direct determination of the calcium profile structure for dipalmitoyllecithin multilayers using neutron diffraction
,”
Biophys. J.
46
,
677
(
1984
).
27.
D.
Uhríková
,
N.
Kučerka
,
J.
Teixeira
,
V.
Gordeliy
, and
P.
Balgavv́y
, “
Structural changes in dipalmitoylphosphatidylcholine bilayer promoted by Ca2+ ions: A small-angle neutron scattering study
,”
Chem. Phys. Lipids
155
,
80
(
2008
).
28.
R.
Dluhy
,
D. G.
Cameron
,
H. H.
Mantsch
, and
R.
Mendelsohn
, “
Fourier transform infrared spectroscopic studies of the effect of calcium ions on phosphatidylserine
,”
Biochemistry
22
,
6318
(
1983
).
29.
H. L.
Casal
,
H. H.
Mantsch
, and
H.
Hauser
, “
Infrared studies of fully hydrated saturated phosphatidylserine bilayers. Effect of lithium and calcium
,”
Biochemistry
26
,
4408
(
1987
).
30.
P.
Garidel
,
A.
Blume
, and
W.
Hübner
, “
A fourier transform infrared spectroscopic study of the interaction of alkaline earth cations with the negatively charged phospholipid 1, 2-dimyristoyl-sn-glycero-3-phosphoglycerol
,”
Biochim. Biophys. Acta, Biomembr.
1466
,
245
(
2000
).
31.
G. L.
Richmond
, “
Molecular bonding and interactions at aqueous surfaces as probed by vibrational sum frequency spectroscopy
,”
Chem. Rev.
102
,
2693
(
2002
).
32.
Y. R.
Shen
and
V.
Ostroverkhov
, “
Sum-frequency vibrational spectroscopy on water interfaces: Polar orientation of water molecules at interfaces
,”
Chem. Rev.
106
,
1140
(
2006
).
33.
S.
Gopalakrishnan
,
D.
Liu
,
H. C.
Allen
,
M.
Kuo
, and
M. J.
Shultz
, “
Vibrational spectroscopic studies of aqueous interfaces: Salts, acids, bases, and nanodrops
,”
Chem. Rev.
106
,
1155
(
2006
).
34.
I. V.
Stiopkin
,
C.
Weeraman
,
P. A.
Pieniazek
,
F. Y.
Shalhout
,
J. L.
Skinner
, and
A. V.
Benderskii
, “
Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy
,”
Nature
474
,
192
(
2011
).
35.
Y. R.
Shen
, “
Phase-sensitive sum-frequency spectroscopy
,”
Annu. Rev. Phys. Chem.
64
,
129
(
2013
).
36.
S.
Nihonyanagi
,
J. A.
Mondal
,
S.
Yamaguchi
, and
T.
Tahara
, “
Structure and dynamics of interfacial water studied by heterodyne-detected vibrational sum-frequency generation
,”
Annu. Rev. Phys. Chem.
64
,
579
(
2013
).
37.
S.
Nihonyanagi
,
S.
Yamaguchi
, and
T.
Tahara
, “
Direct evidence for orientational flip-flop of water molecules at charged interfaces: A heterodyne-detected vibrational sum frequency generation study
,”
J. Chem. Phys.
130
,
204704
(
2009
).
38.
N.
Ji
,
V.
Ostroverkhov
,
C. S.
Tian
, and
Y. R.
Shen
, “
New information on water interfacial structure revealed by phase-sensitive surface spectroscopy
,”
Phys. Rev. Lett.
100
,
096102
(
2008
).
39.
S.
Nihonyanagi
,
T.
Ishiyama
,
T.
Lee
,
S.
Yamaguchi
,
M.
Bonn
,
A.
Morita
, and
T.
Tahara
, “
Unified molecular view of air/water interface based on experimental and theoretical χ(2) spectra of isotopically diluted water surface
,”
J. Am. Chem. Soc.
133
,
16875
(
2011
).
40.
S.
Nihonyanagi
,
R.
Kusaka
,
K.
Inoue
,
A.
Adhikari
,
S.
Yamaguchi
, and
T.
Tahara
, “
Accurate determination of complex χ(2) spectrum of the air/water interface
,”
J. Chem. Phys.
143
,
124707
(
2015
).
41.
S.
Yamaguchi
, “
Development of single-channel heterodyne-detected sum frequency generation spectroscopy and its application to the water/vapor interface
,”
J. Chem. Phys.
143
,
034202
(
2015
).
42.
S.
Sun
,
R.
Liang
,
X.
Xu
,
H.
Zhu
,
Y. R.
Shen
, and
C.
Tian
, “
Phase reference in phase-sensitive sum-frequency vibrational spectroscopy
,”
J. Chem. Phys.
144
,
244711
(
2016
).
43.
G. R.
Medders
and
F.
Paesani
, “
Dissecting the molecular structure of the air/water interface from quantum simulations of the sum-frequency generation spectrum
,”
J. Am. Chem. Soc.
138
,
3912
(
2016
).
44.
Y.
Ni
and
J. L.
Skinner
, “
Communication: Vibrational sum-frequency spectrum of the air-water interface, revisited
,”
J. Chem. Phys.
145
,
031103
(
2016
).
45.
T.
Ishiyama
and
A.
Morita
, “
Computational analysis of vibrational sum frequency generation spectroscopy
,”
Annu. Rev. Phys. Chem.
68
,
355
(
2017
).
46.
S.
Pezzotti
,
D. R.
Galimberti
, and
M.
Gaigeot
, “
2D H-bond network as the topmost skin to the air-water interface
,”
J. Phys. Chem. Lett.
8
,
3133
(
2017
).
47.
Y.
Nagata
and
S.
Mukamel
, “
Vibrational sum-frequency generation spectroscopy at the water/lipid interface: Molecular dynamics simulation study
,”
J. Am. Chem. Soc.
132
,
6434
(
2010
).
48.
J. A.
Mondal
,
S.
Nihonyanagi
,
S.
Yamaguchi
, and
T.
Tahara
, “
Three distinct water structures at a zwitterionic lipid/water interface revealed by heterodyne-detected vibrational sum frequency generation
,”
J. Am. Chem. Soc.
134
,
7842
(
2012
).
49.
S.
Roy
,
S. M.
Gruenbaum
, and
J. L.
Skinner
, “
Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces
,”
J. Chem. Phys.
141
,
18C502
(
2014
).
50.
T.
Ohto
,
E. H. G.
Backus
,
C.
Hsieh
,
M.
Sulpizi
,
M.
Bonn
, and
Y.
Nagata
, “
Lipid carbonyl groups terminate the hydrogen-bond network of membrane-bound water
,”
J. Phys. Chem. Lett.
6
,
4499
(
2015
).
51.
T.
Ishiyama
,
D.
Terada
, and
A.
Morita
, “
Hydrogen-bonding structure at zwitterionic lipid/water interface
,”
J. Phys. Chem. Lett.
7
,
216
(
2016
).
52.
X.
Chen
,
W.
Hua
,
Z.
Huang
, and
H. C.
Allen
, “
Interfacial water structure associated with phospholipid membranes studied by phase-sensitive vibrational sum frequency generation spectroscopy
,”
J. Am. Chem. Soc.
132
,
11336
(
2010
).
53.
W.
Hua
,
D.
Verreault
, and
H. C.
Allen
, “
Solvation of calcium.phosphate headgroup complexes at the DPPC/aqueous interface
,”
Chem. Phys. Chem.
16
,
3910
(
2015
).
54.
J. B.
Klauda
,
R. M.
Venable
,
J. A.
Freites
,
J. W.
O’Connor
,
D. J.
Tobias
,
C.
Mondragon-Ramirez
,
I.
Vorobyov
,
A.
MacKerell
, Jr.
, and
R.
Pastor
, “
Update of the charmm all-atom additive force field for lipids: Validation on six lipid types
,”
J. Phys. Chem. B
114
,
7830
(
2010
).
55.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
,
926
(
1983
).
56.
K.
Vanommeslaeghe
,
E.
Hatcher
,
C.
Acharya
,
S.
Kundu
,
S.
Zhong
,
J.
Shim
,
E.
Darian
,
O.
Guvench
,
P.
Lopes
,
I.
Vorobyov
 et al., “
Charmm general force field: A force field for drug-like molecules compatible with the charmm all-atom additive biological force fields
,”
J. Comput. Chem.
31
,
671
(
2010
).
57.
S.
Marchand
and
B.
Roux
, “
Molecular dynamics study of calbindin D9k in the apo and singly and doubly calcium-loaded states
,”
Proteins: Struct., Funct., Genet.
33
,
265
(
1998
).
58.
D.
Beglov
and
B.
Roux
, “
Finite representation of an infinite for computer simulations
,”
J. Chem. Phys.
100
,
9050
(
1994
).
59.
L.
Martinez
,
R.
Andrade
,
E. G.
Birgin
, and
J. M. A.
Martinez
, “
Package for building initial con gurations for molecular dynamics simulations
,”
J. Comput. Chem.
30
,
2157
(
2009
).
60.
S.
Nosè
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
,
511
(
1984
).
61.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
(
1985
).
62.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
521
,
7182
(
1981
).
63.
T.
Darden
,
D.
York
, and
L.
Pedersen
, “
Particle mesh Ewald: An N log(N) method for Ewald sums in large systems
,”
J. Chem. Phys.
98
,
10089
(
1993
).
64.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
, “
A smooth particle mesh Ewald method
,”
J. Chem. Phys.
103
,
8577
(
1995
).
65.
P. B.
Moore
,
C. F.
Lopez
, and
M. L.
Klein
, “
Dynamical properties of a hydrated lipid bilayer from a multinanosecond molecular dynamics simulation
,”
Biophys. J.
81
,
2484
(
2001
).
66.
R.
Porasso
and
J.
Cascales
, “
A criterion to identify the equilibration time in lipid bilayer simulations
,”
Pap. Phys.
4
,
1
(
2012
).
67.
B.
Hess
,
H.
Bekker
,
H. J. C.
Berendsen
, and
J. G. E. M.
Fraaije
, “
Lincs: A linear constraint solver for molecular simulations
,”
J. Comput. Chem.
18
,
1463
(
1997
).
68.
S.
Pronk
,
S.
Pall
,
R.
Schulz
,
P.
Larsson
,
P.
Bjelkmar
,
R.
Apostolov
,
M. R.
Shirts
,
J. C.
Smith
,
P. M. K.
Kasson
,
D.
Van Der Spoel
 et al., “
Gromacs 4.5: A high-throughput and highly parallel open source molecular simulation toolkit
,”
Bioinformatics
29
,
845
(
2013
).
69.
A.
Morita
and
J. T.
Hynes
, “
A theoretical analysis of the sum frequency generation spectrum of the water surface. II.
,”
J. Phys. Chem. B
106
,
673
(
2002
).
70.
A.
Morita
and
T.
Ishiyama
, “
Recent progress in theoretical analysis of vibrational sum frequency generation spectroscopy
,”
Phys. Chem. Chem. Phys.
10
,
5801
(
2008
).
71.
T.
Ishiyama
and
A.
Morita
, “
Analysis of anisotropic local field in sum frequency generation spectroscopy with the charge response kernel water model
,”
J. Chem. Phys.
131
,
244714
(
2009
).
72.
T.
Ishiyama
and
A.
Morita
, “
Intermolecular correlation effect in sum frequency generation spectroscopy of electrolyte aqueous solution
,”
Chem. Phys. Lett.
431
,
78
(
2006
).
73.
B.
Hribar
,
N. T.
Southall
,
V.
Vlachy
, and
K. A.
Dill
, “
How ions affect the structure of water
,”
J. Am. Chem. Soc.
124
,
12302
(
2002
).
74.
C. S.
Tian
,
S. J.
Byrnes
,
H.
Han
, and
Y. R.
Shen
, “
Surface propensities of atmospherically relevant ions in salt solutions revealed by phase-sensitive sum frequency vibrational spectroscopy
,”
J. Phys. Chem. Lett.
2
,
1946
(
2011
).
75.
A.
Morita
and
J. T.
Hynes
, “
A theoretical analysis of the sum frequency generation spectrum of the water surface
,”
Chem. Phys.
258
,
371
(
2000
).
76.
T.
Ishiyama
and
A.
Morita
, “
Molecular dynamics study of gas-liquid aqueous sodium halide interfaces. II. Analysis of vibrational sum frequency generation spectra
,”
J. Phys. Chem. C
111
,
738
(
2007
).
77.
L. D.
Landau
and
E. M.
Lifshitz
,
Electrodynamics of Continuous Media, Volume 8 of Course of Theoretical Physics
(
Pergamon Press
,
New York
,
1960
).
78.
L.
Onsager
and
N.
Samaras
, “
The surface tension of Debye-Hückel electrolytes
,”
J. Chem. Phys.
2
,
528
(
1934
).
You do not currently have access to this content.