A detailed comparison between the Boublík–Mansoori–Carnahan–Starling–Leland (BMCSL) equation of state of hard-sphere mixtures is made with Molecular Dynamics (MD) simulations of the same compositions. The Labík and Smith simulation technique [S. Labík and W. R. Smith, Mol. Simul. 12, 23–31 (1994)] was used to implement the Widom particle insertion method to calculate the excess chemical potential, βμ0ex, of a test particle of variable diameter, σ0, immersed in a hard-sphere fluid mixture with different compositions and values of the packing fraction, η. Use is made of the fact that the only polynomial representation of βμ0ex which is consistent with the limits σ0 → 0 and σ0 has to be of the cubic form, i.e., c0(η)+c¯1(η)σ0/M1+c¯2(η)(σ0/M1)2+c¯3(η)(σ0/M1)3, where M1 is the first moment of the distribution. The first two coefficients, c0(η) and c¯1(η), are known analytically, while c¯2(η) and c¯3(η) were obtained by fitting the MD data to this expression. This in turn provides a method to determine the excess free energy per particle, βaex, in terms of c¯2, c¯3, and the compressibility factor, Z. Very good agreement between the BMCSL formulas and the MD data is found for βμ0ex, Z, and βaex for binary mixtures and continuous particle size distributions with the top-hat analytic form. However, the BMCSL theory typically slightly underestimates the simulation values, especially for Z, differences which the Boublík–Carnahan–Starling–Kolafa formulas and an interpolation between two Percus–Yevick routes capture well in different ranges of the system parameter space.

1.
T.
Boublík
, “
Hard-sphere equation of state
,”
J. Chem. Phys.
53
,
471
472
(
1970
).
2.
G. A.
Mansoori
,
N. F.
Carnahan
,
K. E.
Starling
, and
T. W.
Leland
, Jr.
, “
Equilibrium thermodynamic properties of the mixture of hard spheres
,”
J. Chem. Phys.
54
,
1523
1525
(
1971
).
3.
D. H. L.
Yau
,
K.-Y.
Chan
, and
D.
Henderson
, “
A further test of the Boublik et al. equations for binary hard sphere mixtures
,”
Mol. Phys.
88
,
1237
1248
(
1996
).
4.
M.
Barošová
,
A.
Malijevský
,
S.
Labík
, and
W. R.
Smith
, “
Computer simulation of the chemical potentials of binary hard-sphere mixtures
,”
Mol. Phys.
87
,
423
439
(
1996
).
5.
A.
Liu
, “
Calculation of chemical potentials of mixtures from computer simulations
,”
Mol. Phys.
89
,
1651
1658
(
1996
).
6.
L.
Lue
and
L. V.
Woodcock
, “
Depletion effects and gelation in a binary hard-sphere fluid
,”
Mol. Phys.
96
,
1435
1443
(
1999
).
7.
M.
Tokuyama
and
Y.
Terada
, “
Slow dynamics and re-entrant melting in a polydisperse hard-sphere fluid
,”
J. Phys. Chem. B
109
,
21357
21363
(
2005
).
8.
C.
Barrio
and
J. R.
Solana
, “
Binary mixtures of additive hard spheres. Simulations and theories
,” in
Theory and Simulation of Hard-Sphere Fluids and Related Systems
, Lecture Notes in Physics, edited by
A.
Mulero
(
Springer-Verlag
,
Berlin
,
2008
), Vol. 753, pp.
133
182
.
9.
G.
Odriozola
and
L.
Berthier
, “
Equilibrium equation of state of a hard sphere binary mixture at very large densities using replica exchange Monte Carlo simulations
,”
J. Chem. Phys.
134
,
054504
(
2011
).
10.
B.
Widom
, “
Some topics in the theory of fluids
,”
J. Chem. Phys.
39
,
2808
2812
(
1963
).
11.
S.
Labík
and
W. R.
Smith
, “
Scaled particle theory and the efficient calculation of the chemical potential of hard spheres in the NVT ensemble
,”
Mol. Simul.
12
,
23
31
(
1994
).
12.
D. M.
Heyes
and
A.
Santos
, “
Chemical potential of a test hard sphere of variable size in a hard-sphere fluid
,”
J. Chem. Phys.
145
,
214504
(
2016
).
13.
V.
Baranau
and
U.
Tallarek
, “
Chemical potential and entropy in monodisperse and polydisperse hard-sphere fluids using Widom’s particle insertion method and a pore size distribution-based insertion probability
,”
J. Chem. Phys.
144
,
214503
(
2016
).
14.
D. M.
Heyes
, “
Chemical potential, partial enthalpy and partial volume of mixtures by NPT molecular dynamics
,”
Chem. Phys.
159
,
149
167
(
1992
).
15.
C.
Perego
,
F.
Giberti
, and
M.
Parrinello
, “
Chemical potential calculations in dense liquids using metadynamics
,”
Eur. Phys. J. Spec. Top.
225
,
1621
1628
(
2016
).
16.
O.
Valsson
,
P.
Tiwary
, and
M.
Parrinello
, “
Enhancing important fluctuations: Rare events and metadynamics from a conceptual viewpoint
,”
Annu. Rev. Phys. Chem.
67
,
159
184
(
2016
).
17.
A.
Santos
,
S. B.
Yuste
, and
M.
López de Haro
, “
Equation of state of a multicomponent d-dimensional hard-sphere fluid
,”
Mol. Phys.
96
,
1
5
(
1999
).
18.
A.
Santos
,
S. B.
Yuste
, and
M.
López de Haro
, “
Virial coefficients and equations of state for mixtures of hard discs, hard spheres, and hard hyperspheres
,”
Mol. Phys.
99
,
1959
1972
(
2001
).
19.
A.
Santos
,
S. B.
Yuste
, and
M.
López de Haro
, “
Contact values of the radial distribution functions of additive hard-sphere mixtures in d dimensions: A new proposal
,”
J. Chem. Phys.
117
,
5785
5793
(
2002
).
20.
A.
Santos
,
S. B.
Yuste
, and
M.
López de Haro
, “
Contact values of the particle-particle and wall-particle correlation functions in a hard-sphere polydisperse fluid
,”
J. Chem. Phys.
123
,
234512
(
2005
).
21.
H.
Hansen-Goos
and
R.
Roth
, “
A new generalization of the Carnahan-Starling equation of state to additive mixtures of hard spheres
,”
J. Chem. Phys.
124
,
154506
(
2006
).
22.
P.
Paricaud
, “
Extension of the BMCSL equation of state for hard spheres to the metastable disordered region: Application to the SAFT approach
,”
J. Chem. Phys.
143
044507
(
2015
).
23.
A.
Mulero
,
C. A.
Galán
,
M. I.
Parra
, and
F.
Cuadros
, “
Equations of state for hard spheres and hard disks
,” in
Theory and Simulation of Hard-Sphere Fluids and Related Systems
, Lecture Notes in Physics, edited by
A.
Mulero
(
Springer-Verlag
,
Berlin
,
2008
), Vol. 753, pp.
37
109
.
24.
J. L.
Lebowitz
and
D.
Zomick
, “
Mixtures of hard spheres with nonadditive diameters: Some exact results and solution of PY equation
,”
J. Chem. Phys.
54
,
3335
3346
(
1971
).
25.
J. W.
Perram
and
E. R.
Smith
, “
A model for the examination of phase behaviour in multicomponent systems
,”
Chem. Phys. Lett.
35
,
138
140
(
1975
).
26.
B.
Barboy
, “
Solution of the compressibility equation of the adhesive hard-sphere model for mixtures
,”
Chem. Phys.
11
,
357
371
(
1975
).
27.
J. K.
Percus
and
G. J.
Yevick
, “
Analysis of classical statistical mechanics by means of collective coordinates
,”
Phys. Rev.
110
,
1
13
(
1958
).
28.
A.
Santos
,
A Concise Course on the Theory of Classical Liquids. Basics and Selected Topics
, Lecture Notes in Physics (
Springer
,
New York
,
2016
), Vol. 923.
29.
A.
Santos
, “
Chemical-potential route: A hidden percus–Yevick equation of state for hard spheres
,”
Phys. Rev. Lett.
109
,
120601
(
2012
).
30.
A.
Santos
and
R. D.
Rohrmann
, “
Chemical-potential route for multicomponent fluids
,”
Phys. Rev. E
87
,
052138
(
2013
).
31.
V.
Ogarko
and
S.
Luding
, “
Equation of state and jamming density for equivalent bi- and polydisperse, smooth, hard sphere systems
,”
J. Chem. Phys.
136
,
124508
(
2012
).
32.
H.
Reiss
,
H. L.
Frisch
, and
J. L.
Lebowitz
, “
Statistical mechanics of rigid spheres
,”
J. Chem. Phys.
31
,
369
380
(
1959
).
33.
J. L.
Lebowitz
,
E.
Helfand
, and
E.
Praestgaard
, “
Scaled particle theory of fluid mixtures
,”
J. Chem. Phys.
43
,
774
779
(
1965
).
34.
M.
Mandell
and
H.
Reiss
, “
Scaled particle theory: Solution to the complete set of scaled particle theory conditions: Applications to surface structure and dilute mixtures
,”
J. Stat. Phys.
13
,
113
128
(
1975
).
35.
Y.
Rosenfeld
, “
Scaled field particle theory of the structure and thermodynamics of isotropic hard particle fluids
,”
J. Chem. Phys.
89
,
4272
4287
(
1988
).
36.
M.
Heying
and
D.
Corti
, “
Scaled particle theory revisited: New conditions and improved predictions of the properties of the hard sphere fluid
,”
J. Phys. Chem. B
108
,
19756
19768
(
2004
).
37.
M.
López de Haro
,
S. B.
Yuste
, and
A.
Santos
, “
Alternative approaches to the equilibrium properties of hard-sphere liquids
,” in
Theory and Simulation of Hard-Sphere Fluids and Related Systems
, Lecture Notes in Physics, edited by
A.
Mulero
(
Springer
,
Berlin
,
2008
), Vol. 753, pp.
183
245
.
38.
A.
Santos
,
S. B.
Yuste
, and
M.
López de Haro
, “
Communication: Inferring the equation of state of a metastable hard-sphere fluid from the equation of state of a hard-sphere mixture at high densities
,”
J. Chem. Phys.
135
,
181102
(
2011
).
39.
A.
Santos
, “
Class of consistent fundamental-measure free energies for hard-sphere mixtures
,”
Phys. Rev. E
86
,
040102(R)
(
2012
).
40.
A.
Santos
,
S. B.
Yuste
,
M.
López de Haro
,
G.
Odriozola
, and
V.
Ogarko
, “
Simple effective rule to estimate the jamming packing fraction of polydisperse hard spheres
,”
Phys. Rev. E
89
,
040302(R)
(
2014
).
41.
N. F.
Carnahan
and
K. E.
Starling
, “
Equation of state for nonattracting rigid spheres
,”
J. Chem. Phys.
51
,
635
636
(
1969
).
42.
T.
Boublík
and
I.
Nezbeda
, “
P-V-T behaviour of hard body fluids. Theory and experiment
,”
Collect. Czech. Chem. Commun.
51
,
2301
2432
(
1986
).
43.
T.
Boublík
, “
Equations of state of hard body fluids
,”
Mol. Phys.
59
,
371
380
(
1986
).
44.
H.
Reiss
,
H. L.
Frisch
,
E.
Helfand
, and
J. L.
Lebowitz
, “
Aspects of the statistical thermodynamics of real fluids
,”
J. Chem. Phys.
32
,
119
124
(
1960
).
45.
R.
Roth
,
R.
Evans
,
A.
Lang
, and
G.
Kahl
, “
Fundamental measure theory for hard-sphere mixtures revisited: The white bear version
,”
J. Phys.: Condens. Matter
14
,
12063
12078
(
2002
).
46.
B. J.
Alder
, “
Studies in molecular dynamics. III. A mixture of hard spheres
,”
J. Chem. Phys.
40
,
2724
2730
(
1964
).
47.
A.
Rotenberg
, “
Monte Carlo equation of state for hard spheres in an attractive square well
,”
J. Chem. Phys.
43
,
1198
1201
(
1965
).
48.
M. N.
Bannermana
and
L.
Lue
, “
Transport properties of highly asymmetric hard-sphere mixtures
,”
J. Chem. Phys.
130
,
164507
(
2009
).
49.
T.
Biben
and
J.-P.
Hansen
, “
Phase separation of asymmetric binary hard-sphere fluids
,”
Phys. Rev. Lett.
66
,
2215
2218
(
1991
).
50.
M.
Dijkstra
,
R.
van Roij
, and
R.
Evans
, “
Phase diagram of highly asymmetric binary hard-sphere mixtures
,”
Phys. Rev. E
59
,
5744
5771
(
1999
).
51.
D. A.
Kofke
and
P. G.
Bolhuis
, “
Freezing of polydisperse hard spheres
,”
Phys. Rev. E
59
,
618
622
(
1999
).

Supplementary Material

You do not currently have access to this content.