In a conventional semiconductor, when the dielectric screening effect is suppressed, the exciton binding energy increases and the corresponding excitonic transition would exhibit a redshift in the spectrum. In this work, I study the optical properties of hexagonal graphene nanodots by using a configuration interaction approach and reveal that the edge of the absorption spectrum shows an abnormal blueshift as the environmental dielectric constant ϵr decreases. The two dominant many-body effects in the nanodot: the quasiparticle and excitonic effects are both found to scale almost linearly with ϵr1. The former is shown to have a larger proportionality constant and thus accounts for the blueshift of the absorption edge. In contrast to the long-range Coulomb interaction, the on-site Coulomb energy is found to have a negative impact on the bright excitonic states. In the presence of a strong dielectric screening effect, a strong short-range Coulomb interaction is revealed to be responsible for the disintegration of the bright exciton.

1.
C. G.
Kuper
and
G. D.
Whitfield
,
Polarons and Excitons
(
Plenum Press
,
1963
).
2.
N. W.
Ashcroft
and
N. D.
Mermin
,
Solid State Physics
(
Holt, Rinehart and Winston
,
1976
).
3.
R. S.
Knox
,
Theory of Excitons
, Solid State Physics Suppl. 5 (
Academic Press
,
1963
).
4.
H. T.
Grahn
,
Introduction to Semiconductor Physics
(
World Scientific
,
1999
).
5.
S. Y.
Zhou
,
G.-H.
Gweon
,
J.
Graf
,
A. V.
Fedorov
,
C. D.
Spataru
,
R. D.
Diehl
,
Y.
Kopelevich
,
D.-H.
Lee
,
S. G.
Louie
, and
A.
Lanzara
,
Nat. Phys.
2
,
595
(
2006
).
6.
T.
Mueller
,
F.
Xia
, and
P.
Avouris
,
Nat. Photonics
4
,
297
(
2010
).
7.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
(
2004
).
8.
M.
Ishigami
,
J. H.
Chen
,
W. G.
Cullen
,
M. S.
Fuhrer
, and
E. D.
Williams
,
Nano Lett.
7
,
1643
(
2007
).
9.
Y.
Wu
,
Y.-M.
Lin
,
A. A.
Bol
,
K. A.
Jenkins
,
F.
Xia
,
D. B.
Farmer
,
Y.
Zhu
, and
P.
Avouris
,
Nature
472
,
74
(
2011
).
10.
W.
Strupinski
,
K.
Grodecki
,
A.
Wysmolek
,
R.
Stepniewski
,
T.
Szkopek
,
P. E.
Gaskell
,
A.
Grüneis
,
D.
Haberer
,
R.
Bozek
,
J.
Krupka
, and
J. M.
Baranowski
,
Nano Lett.
11
,
1786
(
2011
).
11.
J. Y.
Kim
,
C.
Lee
,
S.
Bae
,
K. S.
Kim
,
B. H.
Hong
, and
E. J.
Choi
,
Appl. Phys. Lett.
98
,
201907
(
2011
).
12.
Y.-W.
Son
,
M. L.
Cohen
, and
S. G.
Louie
,
Phys. Rev. Lett.
97
,
216803
(
2006
).
13.
S.
Sharifzadeh
,
A.
Biller
,
L.
Kronik
, and
J. B.
Neaton
,
Phys. Rev. B
85
,
125307
(
2012
).
14.
W.
Sheng
,
M.
Sun
,
A.
Zhou
, and
S.-J.
Xu
,
Appl. Phys. Lett.
103
,
143109
(
2013
).
15.
W.
Sheng
,
K.
Luo
, and
A.
Zhou
,
J. Chem. Phys.
142
,
021102
(
2015
).
16.
R.
Dillenschneider
and
J. H.
Han
,
Phys. Rev. B
78
,
045401
(
2008
).
17.
R.
Nandkishore
and
L.
Levitov
,
Phys. Rev. Lett.
104
,
156803
(
2010
).
18.
J.
Sabio
,
F.
Sols
, and
F.
Guinea
,
Phys. Rev. B
82
,
121413(R)
(
2010
).
19.
T.
Paananen
and
R.
Egger
,
Phys. Rev. B
84
,
155456
(
2011
).
20.
W.
Sheng
,
S.-J.
Cheng
, and
P.
Hawrylak
,
Phys. Rev. B
71
,
035316
(
2005
).
21.
A.
Franceschetti
and
A.
Zunger
,
Phys. Rev. B
62
,
2614
(
2000
).
22.
P.
Yadav
,
P. K.
Srivastava
, and
S.
Ghosh
,
Nanoscale
7
,
18015
(
2015
).
23.
W.
Sheng
and
H.
Wang
,
Phys. Chem. Chem. Phys.
18
,
28365
(
2016
).
24.
H.
Wang
and
W.
Sheng
,
J. Chem. Phys.
146
,
084705
(
2017
).
25.
C.
Sun
,
F.
Figge
,
J. A.
McGuire
,
Q.
Li
, and
L.-S.
Li
,
Phys. Rev. Lett.
113
,
107401
(
2014
).
26.
V. N.
Kotov
,
B.
Uchoa
,
V. M.
Pereira
,
F.
Guinea
, and
A. H.
Castro Neto
,
Rev. Mod. Phys.
84
,
1067
(
2012
).
27.
W.
Sheng
,
M.
Sun
, and
A.
Zhou
,
Phys. Rev. B
88
,
085432
(
2013
).
28.
Y.
Zhang
,
W.
Sheng
, and
Y.
Li
,
Phys. Chem. Chem. Phys.
19
,
23131
(
2017
).
You do not currently have access to this content.