Recently, single-molecule manipulation techniques in micro- and nanofluidic channels have attracted significant attention. To precisely control the transport velocity, the dynamics of the surrounding liquid must be understood in addition to the behavior of the target particles. Some unknowns about interactions between electrolyte ions and solvents remain to be clarified from a microscopic viewpoint. Herein, we propose a technique to generate a liquid flow driven by ion transport phenomena, the so-called electrohydrodynamic (EHD) flow, where electrolyte ions are dialyzed using a cation-exchange membrane. With this method, it is possible to apply an electric body force in liquids, which is different from electroosmotic flows that are limited to ion transport in electric double layers, and is expected to be a good candidate for detailed control of liquid flows in micro- and nanofluidic channels. To collect basic design data based on the knowledge of microscopic fluid dynamics of the present technique, a mathematical model of an EHD flow dragged by electrical carriers in an ionic current is developed and results are compared with experimental data. In our experiments, EHD flows are efficiently driven by applied electric fields in a cation dominant current. To induce such an EHD flow, the externally applied electric potential can be drastically reduced to 2.0 V in comparison with previous methods because we do not need an excessively high voltage to inject electrical charges into liquids. This method enables us to induce EHD flows in aqueous solutions and is expected to open the door to low-voltage driven liquid flow control.

1.
O. M.
Stuetzer
,
J. Appl. Phys.
30
,
984
(
1959
).
2.
O. M.
Stuetzer
,
J. Appl. Phys.
31
,
136
(
1960
).
3.
J. R.
Melcher
and
G. I.
Taylor
,
Annu. Rev. Fluid Mech.
1
,
111
(
1969
).
4.
W. F.
Pickard
,
J. Appl. Phys.
34
,
246
(
1963
).
5.
I.
Hayati
,
A. I.
Bailey
, and
T. F.
Tadros
,
Nature
319
,
41
(
1986
).
6.
S. N.
Jayasinghe
,
A. N.
Qureshi
, and
P. A. M.
Eagles
,
Small
2
,
216
(
2006
).
7.
R. T.
Collins
,
J. J.
Jones
,
M. T.
Harris
, and
O. A.
Basaran
,
Nat. Phys.
4
,
149
(
2008
).
8.
M.
Trau
,
D. A.
Saville
, and
I. A.
Aksay
,
Langmuir
13
,
6375
(
1997
).
9.
W. D.
Ristenpart
,
I. A.
Aksay
, and
D. A.
Saville
,
Phys. Rev. E
69
,
021405
(
2004
).
10.
W. D.
Ristenpart
,
I. A.
Aksay
, and
D. A.
Saville
,
J. Fluid Mech.
575
,
83
(
2007
).
11.
S. F.
Bart
,
L. S.
Tavrow
,
M.
Mehregany
, and
J. H.
Lang
,
Sens. Actuators, A
21
(
1-3
),
193
(
1990
).
12.
G.
Fuhr
,
T.
Schnelle
, and
B.
Wagner
,
J. Micromech. Microeng.
4
,
217
(
1994
).
13.
S.-H.
Ahn
and
Y.-K.
Kim
,
Sens. Actuators, A
70
,
1
(
1998
).
14.
S. K.
Bhaumik
,
R.
Roy
,
S.
Chakraborty
, and
S.
DasGupta
,
Sens. Actuators, B
193
,
288
(
2014
).
15.
C.
Dekker
,
Nat. Nanotechnol.
2
,
209
(
2007
).
16.
D.
Branton
,
D. W.
Deamer
,
A.
Marziali
,
H.
Bayley
,
S. A.
Benner
,
T.
Butler
,
M.
Di Ventra
,
S.
Garaj
,
A.
Hibbs
,
X.
Huang
 et al,
Nat. Biotechnol.
26
,
1146
(
2008
).
17.
B. M.
Venkatesan
and
R.
Bashir
,
Nat. Nanotechnol.
6
,
615
(
2011
).
18.
S.
Uehara
,
H.
Shintaku
, and
S.
Kawano
,
J. Fluids Eng.
133
,
121203
(
2011
).
19.
K.
Doi
,
A.
Yano
, and
S.
Kawano
,
J. Phys. Chem. B
119
,
228
(
2015
).
20.
A.
Yano
,
K.
Doi
, and
S.
Kawano
,
Int. J. Chem. Eng. Appl.
6
,
254
(
2015
).
21.
A.
Yano
,
H.
Shirai
,
M.
Imoto
,
K.
Doi
, and
S.
Kawano
,
Jpn. J. Appl. Phys., Part 1
56
,
097201
(
2017
).
22.
O. O.
Osman
,
H.
Shintaku
, and
S.
Kawano
,
Microfluid. Nanofluid.
13
,
703
(
2012
).
23.
O. O.
Osman
,
A.
Shirai
, and
S.
Kawano
,
Microfluid. Nanofluid.
19
,
595
(
2015
).
24.
T.
Yasui
,
S.
Rahong
,
K.
Motoyama
,
T.
Yanagida
,
Q.
Wu
,
N.
Kaji
,
M.
Kanai
,
K.
Doi
,
K.
Nagashima
,
M.
Tokeshi
 et al,
ACS Nano
7
,
3029
(
2013
).
25.
N.
Agmon
,
Chem. Phys. Lett.
244
,
456
(
1995
).
26.
R.
Nagura
,
K.
Doi
, and
S.
Kawano
,
Micro Nano Lett.
12
,
526
(
2017
).
27.
R. B.
Schoch
,
J.
Han
, and
P.
Renaud
,
Rev. Mod. Phys.
80
,
839
(
2008
).
28.
K.
Doi
,
M.
Tsutsui
,
T.
Ohshiro
,
C.-C.
Chien
,
M.
Zwolak
,
M.
Taniguchi
,
T.
Kawai
,
S.
Kawano
, and
M.
Di Ventra
,
J. Phys. Chem. C
118
,
3758
(
2014
).
29.
A. J.
Bard
and
L. R.
Faulkner
, in
Electrochemical Methods
, 2nd ed. (
John Wiley & Sons
,
New York
,
2001
), Chap. 13.
30.
H. S.
Carslaw
and
J. C.
Jaeger
, in
Conduction of Heat in Solids
, 2nd ed. (
Oxford at the Clarendon Press
,
1959
), Chap. 5.
31.
J.
Crank
, in
The Mathematics of Diffusion
(
Oxford at the Clarendon Press
,
1956
), Chap. 4.
32.
W.
Qian
,
K.
Doi
,
S.
Uehara
,
K.
Morita
, and
S.
Kawano
,
Int. J. Mol. Sci.
15
,
13817
(
2014
).
33.
D. C.
Henry
,
Proc. R. Soc. Lond. A
133
,
106
(
1931
).
34.
G. F.
Roach
, in
Green’s Functions
, 2nd ed. (
Cambridge University Press
,
New York
,
1982
), Chap. 9.
35.
M.
Stone
and
P.
Goldbart
, in
Mathematics for Physics
(
Cambridge University Press
,
New York
,
2009
), Chap. 5.
You do not currently have access to this content.