Selected resonance states of the deuterated formyl radical in the electronic ground state X̃A2 are computed using our recently introduced dynamically pruned discrete variable representation [H. R. Larsson, B. Hartke, and D. J. Tannor, J. Chem. Phys. 145, 204108 (2016)]. Their decay and asymptotic distributions are analyzed and, for selected resonances, compared to experimental results obtained by a combination of stimulated emission pumping and velocity-map imaging of the product D atoms. The theoretical results show good agreement with the experimental kinetic energy distributions. The intramolecular vibrational energy redistribution is analyzed and compared with previous results from an effective polyad Hamiltonian. Specifically, we analyzed the part of the wavefunction that remains in the interaction region during the decay. The results from the polyad Hamiltonian could mainly be confirmed. The C=O stretch quantum number is typically conserved, while the D—C=O bend quantum number decreases. Differences are due to strong anharmonic coupling such that all resonances have major contributions from several zero-order states. For some of the resonances, the coupling is so strong that no further zero-order states appear during the dynamics in the interaction region, even after propagating for 300 ps.

1.
P. J.
Robinson
and
K. A.
Holbrook
,
Unimolecular Reactions
(
Wiley
,
1972
).
2.
T.
Baer
and
W. L.
Hase
,
Unimolecular Reaction Dynamics
(
Oxford University Press
,
1996
).
3.
R.
Schinke
,
Photodissociation Dynamics
(
Cambridge University Press
,
1995
).
4.
M.
Stumpf
,
A. J.
Dobbyn
,
D. H.
Mordaunt
,
H.-M.
Keller
,
H.
Fluethmann
,
R.
Schinke
,
H.-J.
Werner
, and
K.
Yamashita
,
Faraday Discuss.
102
,
193
(
1995
).
5.
A. J.
Ocaña
,
E.
Jiménez
,
B.
Ballesteros
,
A.
Canosa
,
M.
Antiñolo
,
J.
Albaladejo
,
M.
Agúndez
,
J.
Cernicharo
,
A.
Zanchet
,
P.
del Mazo
,
O.
Roncero
, and
A.
Aguado
,
Astrophys. J.
850
,
28
(
2017
).
6.
C.
Stöck
,
X.
Li
,
H.-M.
Keller
,
R.
Schinke
, and
F.
Temps
,
J. Chem. Phys.
106
,
5333
(
1997
).
7.
H.-M.
Keller
,
M.
Stumpf
,
T.
Schröder
,
C.
Stöck
,
F.
Temps
,
R.
Schinke
,
H.-J.
Werner
,
C.
Bauer
, and
P.
Rosmus
,
J. Chem. Phys.
106
,
5359
(
1997
).
8.
A.
Troellsch
and
F.
Temps
,
Z. Phys. Chem.
215
,
207
(
2001
).
9.
C.
Jung
,
H. S.
Taylor
, and
E.
Atilgan
,
J. Phys. Chem. A
106
,
3092
(
2002
).
10.
H.-R.
Dübal
and
M.
Quack
,
Mol. Phys.
53
,
257
(
1984
).
11.
A.
Amrein
,
H.-R.
Dübal
, and
M.
Quack
,
Mol. Phys.
56
,
727
(
1985
).
12.
M. E.
Kellman
and
V.
Tyng
,
Acc. Chem. Res.
40
,
243
(
2007
).
13.
G.
Adamson
,
X.
Zhao
, and
R.
Field
,
J. Mol. Spectrosc.
160
,
11
(
1993
).
14.
D. W.
Neyer
,
X.
Luo
,
P. L.
Houston
, and
I.
Burak
,
J. Chem. Phys.
98
,
5095
(
1993
).
15.
J. D.
Tobiason
,
J. R.
Dunlop
, and
E. A.
Rohlfing
,
J. Chem. Phys.
103
,
1448
(
1995
).
16.
J. D.
Tobiason
,
J. R.
Dunlop
, and
E. A.
Rohlfing
,
Chem. Phys. Lett.
235
,
268
(
1995
).
17.
J.
Wei
,
A.
Tröllsch
,
C.
Tesch
, and
F.
Temps
,
J. Chem. Phys.
120
,
10530
(
2004
).
18.
D. W.
Neyer
,
X.
Luo
,
I.
Burak
, and
P. L.
Houston
,
J. Chem. Phys.
102
,
1645
(
1995
).
19.
J. M.
Bowman
,
J. S.
Bittman
, and
L. B.
Harding
,
J. Chem. Phys.
85
,
911
(
1986
).
20.
H.
Romanowski
,
K.-T.
Lee
,
J. M.
Bowman
, and
L. B.
Harding
,
J. Chem. Phys.
84
,
4888
(
1986
).
21.
H.-J.
Werner
,
C.
Bauer
,
P.
Rosmus
,
H.-M.
Keller
,
M.
Stumpf
, and
R.
Schinke
,
J. Chem. Phys.
102
,
3593
(
1995
).
22.
H.-M.
Keller
,
H.
Floethmann
,
A. J.
Dobbyn
,
R.
Schinke
,
H.-J.
Werner
,
C.
Bauer
, and
P.
Rosmus
,
J. Chem. Phys.
105
,
4983
(
1996
).
23.
H.-M.
Keller
and
R.
Schinke
,
J. Chem. Phys.
110
,
9887
(
1999
).
24.
B.
Poirier
and
T.
Carrington
,
J. Chem. Phys.
116
,
1215
(
2002
).
25.
V. A.
Mandelshtam
and
A.
Neumaier
,
J. Theor. Comput. Chem.
1
,
1
(
2002
).
26.
J. C.
Tremblay
and
T.
Carrington
,
J. Chem. Phys.
122
,
244107
(
2005
).
27.
S. A.
Ndengué
,
R.
Dawes
,
F.
Gatti
, and
H.-D.
Meyer
,
J. Phys. Chem. A
119
,
12043
(
2015
).
28.
S. A.
Ndengué
,
R.
Dawes
, and
H.
Guo
,
J. Chem. Phys.
144
,
244301
(
2016
).
29.
J.
Qi
and
J. M.
Bowman
,
J. Chem. Phys.
105
,
9884
(
1996
).
30.
C.-Y.
Yang
and
S. K.
Gray
,
J. Chem. Phys.
107
,
7773
(
1997
).
31.
H.-M.
Keller
and
R.
Schinke
,
J. Chem. Soc., Faraday Trans.
93
,
879
(
1997
).
32.
U.
Brandt-Pollmann
,
J.
Weiß
, and
R.
Schinke
,
J. Chem. Phys.
115
,
8876
(
2001
).
33.
R. N.
Dixon
,
J. Chem. Soc., Faraday Trans.
88
,
2575
(
1992
).
34.
S. K.
Gray
,
J. Chem. Phys.
96
,
6543
(
1992
).
35.
D.
Wang
and
J. M.
Bowman
,
Chem. Phys. Lett.
235
,
277
(
1995
).
36.
A.
Loettgers
and
R.
Schinke
,
J. Chem. Phys.
106
,
8938
(
1997
).
37.
S.
Stamatiadis
,
S. C.
Farantos
,
H.-M.
Keller
, and
R.
Schinke
,
Chem. Phys. Lett.
344
,
565
(
2001
).
38.
F.
Renth
,
F.
Temps
, and
A.
Tröllsch
,
J. Chem. Phys.
118
,
659
(
2003
).
39.
J.
Huang
and
G.
Wu
,
Chem. Phys. Lett.
439
,
231
(
2007
).
40.
A.
Semparithi
and
S.
Keshavamurthy
,
Phys. Chem. Chem. Phys.
5
,
5051
(
2003
).
41.
A. T. J. B.
Eppink
and
D. H.
Parker
,
Rev. Sci. Instrum.
68
,
3477
(
1997
).
42.
B.
Hartke
,
Phys. Chem. Chem. Phys.
8
,
3627
(
2006
).
43.
H. R.
Larsson
,
B.
Hartke
, and
D. J.
Tannor
,
J. Chem. Phys.
145
,
204108
(
2016
).
44.
D. J.
Tannor
,
S.
Machnes
,
E.
Assémat
, and
H. R.
Larsson
, “
Phase space vs. coordinate space methods: Prognosis for large quantum calculations
,” in
Advances in Chemical Physics
(
John Wiley & Sons, Inc.
,
2018
), Vol. 163, pp.
279
323
.
45.
L.
Song
,
A.
van der Avoird
, and
G. C.
Groenenboom
,
J. Phys. Chem. A
117
,
7571
(
2013
).
46.
D. J.
Tannor
,
Introduction to Quantum Mechanics: A Time-Dependent Perspective
, 1st ed. (
University Science Books
,
2007
).
47.
S.
Machnes
,
E.
Assémat
, and
D.
Tannor
, “
Quantum dynamics in phase space using the biorthogonal von Neumann bases: Algorithmic considerations
,” e-print arXiv:1603.03963 (
2016
).
48.
A.
Shimshovitz
and
D. J.
Tannor
,
Phys. Rev. Lett.
109
,
070402
(
2012
).
49.
S.
Machnes
,
E.
Assémat
,
H. R.
Larsson
, and
D. J.
Tannor
,
J. Phys. Chem. A
120
,
3296
(
2016
).
50.
H. R.
Larsson
and
D. J.
Tannor
,
J. Chem. Phys.
147
,
044103
(
2017
).
51.
G. A.
Worth
,
J. Chem. Phys.
112
,
8322
(
2000
).
52.
R.
Wodraszka
and
T.
Carrington
,
J. Chem. Phys.
145
,
044110
(
2016
).
53.
R.
Wodraszka
and
T.
Carrington
,
J. Chem. Phys.
146
,
194105
(
2017
).
54.
U.
Manthe
,
J. Chem. Phys.
105
,
6989
(
1996
).
55.
R.
Wodraszka
and
T.
Carrington
,
J. Chem. Phys.
148
,
044115
(
2018
).
56.
J.
Wei
,
A.
Kuczmann
,
J.
Riedel
, and
F.
Temps
,
Phys. Chem. Chem. Phys.
5
,
315
(
2003
).
57.
J.
Riedel
,
S.
Dziarzhytski
,
A.
Kuczmann
,
F.
Renth
, and
F.
Temps
,
Chem. Phys. Lett.
414
,
473
(
2005
).
58.
J.
Riedel
, “
Untersuchung photoinduzierter molekularer Zerfallsprozesse mittels Photofragment-Geschwindigkeitskartographie
,” Ph.D. thesis,
Christian-Albrechts-Universität zu Kiel
,
2006
.
59.
B.-Y.
Chang
,
R. C.
Hoetzlein
,
J. A.
Mueller
,
J. D.
Geiser
, and
P. L.
Houston
,
Rev. Sci. Instrum.
69
,
1665
(
1998
).
60.
F.
Le Quéré
and
C.
Leforestier
,
J. Chem. Phys.
92
,
247
(
1990
).
61.
D. T.
Colbert
and
W. H.
Miller
,
J. Chem. Phys.
96
,
1982
(
1992
).
62.
J.
Sielk
,
H. F.
von Horsten
,
F.
Krüger
,
R.
Schneider
, and
B.
Hartke
,
Phys. Chem. Chem. Phys.
11
,
463
475
(
2009
).
63.
L. R.
Pettey
and
R. E.
Wyatt
,
Chem. Phys. Lett.
424
,
443
(
2006
).
64.
L. R.
Pettey
and
R. E.
Wyatt
,
Int. J. Quantum Chem.
107
,
1566
(
2007
).
65.
D. A.
McCormack
,
J. Chem. Phys.
124
,
204101
(
2006
).
66.
I.
Gohberg
and
V.
Olshevsky
,
Linear Algebra Appl.
202
,
163
(
1994
).
67.
X.
Wang
and
J. M.
Bowman
,
Int. J. Quantum Chem.
117
,
139
(
2017
).
68.
S.-W.
Huang
and
T.
Carrington
,
J. Chem. Phys.
112
,
8765
(
2000
).
69.
B.
Poirier
and
T.
Carrington
,
J. Chem. Phys.
114
,
9254
(
2001
).
70.
D.
Neuhauser
,
J. Chem. Phys.
93
,
2611
(
1990
).
71.
D.
Neuhauser
,
J. Chem. Phys.
95
,
4927
(
1991
).
72.
K.
Takatsuka
and
N.
Hashimoto
,
J. Chem. Phys.
103
,
6057
(
1995
).
73.
V. A.
Mandelshtam
and
H. S.
Taylor
,
J. Chem. Phys.
106
,
5085
(
1997
).
74.
G. G.
Balint-Kurti
,
R. N.
Dixon
, and
C. C.
Marston
,
J. Chem. Soc., Faraday Trans.
86
,
1741
(
1990
).
75.
P. F.
Bernath
,
Spectra of Atoms and Molecules
, 2nd ed. (
Oxford University Press
,
2005
).
76.
L.
Song
,
N.
Balakrishnan
,
A.
van der Avoird
,
T.
Karman
, and
G. C.
Groenenboom
,
J. Chem. Phys.
142
,
204303
(
2015
).
77.
F.
Renth
,
J.
Riedel
, and
F.
Temps
,
Rev. Sci. Instrum.
77
,
033103
(
2006
).
78.
D. E.
Manolopoulos
,
J. Chem. Phys.
117
,
9552
(
2002
).
79.
J.
Meija
,
T. B.
Coplen
,
M.
Berglund
,
W. A.
Brand
,
P.
De Bièvre
,
M.
Gröning
,
N. E.
Holden
,
J.
Irrgeher
,
R. D.
Loss
,
T.
Walczyk
, and
T.
Prohaska
,
Pure Appl. Chem.
88
,
265
(
2016
).
80.
M.
Wang
,
G.
Audi
,
F. G.
Kondev
,
W.
Huang
,
S.
Naimi
, and
X.
Xu
,
Chin. Phys. C
41
,
030003
(
2017
).
81.
T. J.
Park
and
J. C.
Light
,
J. Chem. Phys.
85
,
5870
(
1986
).
82.
M. H.
Beck
,
A.
Jäckle
,
G. A.
Worth
, and
H.-D.
Meyer
,
Phys. Rep.
324
,
1
(
2000
).
83.
G. A.
Worth
,
M. H.
Beck
,
A.
Jäckle
, and
H.-D.
Meyer
, The MCTDH package, version 8.4.14,
2017
, see http://mctdh.uni-hd.de.
84.

To avoid unnecessary computational costs, not all the resonances have been propagated with the final parameters. Furthermore, the propagation for the filter diagonalization has been performed with a larger basis, but the results with the basis from Table I are virtually identical.

85.
J.
Stohner
and
M.
Quack
, “
Conventions, symbols, quantities, units and constants for high-resolution molecular spectroscopy
,” in
Handbook of High-resolution Spectroscopy
(
John Wiley & Sons, Ltd.
,
2011
).
86.

The PES of Ndengué et al. shows a better agreement to experimental data for many but not all resonances in HCO. Some wavenumbers and widths are actually still better described by the WKS surface. Thus, it cannot be expected that this PES would give much improved results than the two PESs studied here.

87.
R.
Schinke
,
R. L.
Vander Wal
,
J. L.
Scott
, and
F. F.
Crim
,
J. Chem. Phys.
94
,
283
(
1991
).
88.

For (0, 4, 2), the resonance state computed with the SAG PES does show an IVR with a decrease in v3 to 2 and 1, but the initial state has a significant contribution near the linear configuration of DCO. Since linear configurations are not properly described (see text), this result has to be taken with caution.

Supplementary Material

You do not currently have access to this content.