Structural aspects of the Au147 cluster have been investigated through a density functional based tight binding global optimization involving a parallel tempering molecular dynamics scheme with quenching followed by geometries relaxation at the Density Functional Theory (DFT) level. The focus is put on the competition between relaxed ordered regular geometries and disordered (or amorphous) structures. The present work shows that Au147 amorphous geometries are relevant low energy candidates and are likely to contribute in finite temperature dynamics and thermodynamics. The structure of the amorphous-like isomers is discussed from the anisotropy parameters, the atomic coordinations, the radial and pair distribution functions, the IR spectra, and the vibrational DOS. With respect to the regular structures, the amorphous geometries are shown to be characterized by a larger number of surface atoms, a less dense volume with reduced coordination number per atom, a propensity to increase the dimension of flat facets at the surface, and a stronger anisotropy. Moreover, all amorphous clusters have similar IR spectra, almost continuous with active frequencies over the whole spectral range, while symmetric clusters are characterized by a few lines with large intensities.

1.
Y.-C.
Yeh
,
B.
Creran
, and
V. M.
Rotello
, “
Gold nanoparticles: Preparation, properties, and applications in bionanotechnology
,”
Nanoscale
4
,
1871
1880
(
2012
).
2.
A.
Goldstein
,
Y.
Soroka
,
M.
Frusic-Zlotkin
,
A.
Lewis
, and
R.
Kohen
, “
The bright side of plasmonic gold nanoparticles; activation of Nrf2, the cellular protective pathway
,”
Nanoscale
8
,
11748
11759
(
2016
).
3.
P.-P.
Fang
,
S.
Chen
,
H.
Deng
,
M. D.
Scanlon
,
F.
Gumy
,
H. J.
Lee
,
D.
Momotenko
,
V.
Amstutz
,
F.
Cortés-Salazar
,
C. M.
Pereira
,
Z.
Yang
, and
H. H.
Girault
, “
Conductive gold nanoparticle mirrors at liquid/liquid interfaces
,”
ACS Nano
7
,
9241
9248
(
2013
).
4.
Y.
Xiong
,
M.
Li
,
H.
Liu
,
Z.
Xuan
,
J.
Yang
, and
D.
Liu
, “
Janus pegylated gold nanoparticles: A robust colorimetric probe for sensing nitrite ions in complex samples
,”
Nanoscale
9
,
1811
1815
(
2017
).
5.
B.
Liu
,
T.
Jiang
,
H.
Zheng
,
S.
Dissanayke
,
W.
Song
,
A.
Federico
,
S. L.
Suib
, and
J.
He
, “
Nanoengineering of aggregation-free and thermally-stable gold nanoparticles in mesoporous frameworks
,”
Nanoscale
9
,
6380
6390
(
2017
).
6.
P.
Gruene
,
D. M.
Rayner
,
B.
Redlich
,
A. F. G.
van der Meer
,
J. T.
Lyon
,
G.
Meijer
, and
A.
Fielicke
, “
Structures of neutral Au7, Au19, and Au20 clusters in the gas phase
,”
Science
321
,
674
676
(
2008
).
7.
H.
Häkkinen
, “
Atomic and electronic structure of gold clusters: Understanding flakes, cages and superatoms from simple concepts
,”
Chem. Soc. Rev.
37
,
1847
1859
(
2008
).
8.
D.
Schooss
,
P.
Weis
,
O.
Hampe
, and
M. M.
Kappes
, “
Determining the size-dependent structure of ligand-free gold-cluster ions
,”
Philos. Trans. R. Soc., A
368
,
1211
1243
(
2010
).
9.
A.
Lechtken
,
C.
Neiss
,
J.
Stairs
, and
D.
Schooss
, “
Comparative study of the structures of copper, silver, and gold icosamers: Influence of metal type and charge state
,”
J. Chem. Phys.
129
,
154304
(
2008
).
10.
B.
Yoon
,
P.
Koskinen
,
B.
Huber
,
O.
Kostko
,
B.
von Issendorff
,
H.
Häkkinen
,
M.
Moseler
, and
U.
Landman
, “
Size-dependent structural evolution and chemical reactivity of gold clusters
,”
ChemPhysChem
8
,
157
161
(
2007
).
11.
X.-B.
Li
,
H.-Y.
Wang
,
X.-D.
Yang
,
Z.-H.
Zhu
, and
Y.-J.
Tang
, “
Size dependence of the structures and energetic and electronic properties of gold clusters
,”
J. Chem. Phys.
126
,
084505
(
2007
).
12.
A. V.
Walker
, “
Structure and energetics of small gold nanoclusters and their positive ions
,”
J. Chem. Phys.
122
,
094310
(
2005
).
13.
H.
Häkkinen
and
U.
Landman
, “
Gold clusters (Aun, 2 ≤ n ≤ 10) and their anions
,”
Phys. Rev. B
62
,
R2287
R2290
(
2000
).
14.
H.
Häkkinen
,
M.
Moseler
, and
U.
Landman
, “
Bonding in Cu, Ag, and Au clusters: Relativistic effects, trends, and surprises
,”
Phys. Rev. Lett.
89
,
033401
(
2002
).
15.
H.
Häkkinen
,
B.
Yoon
,
U.
Landman
,
X.
Li
,
H.-J.
Zhai
, and
L.-S.
Wang
, “
On the electronic and atomic structures of small aun (n = 4–14) clusters: A photoelectron spectroscopy and density-functional study
,”
J. Phys. Chem. A
107
,
6168
6175
(
2003
).
16.
L.
Xiao
and
L.
Wang
, “
From planar to three-dimensional structural transition in gold clusters and the spin–orbit coupling effect
,”
Chem. Phys. Lett.
392
,
452
455
(
2004
).
17.
L.
Xiao
,
B.
Tollberg
,
X.
Hu
, and
L.
Wang
, “
Structural study of gold clusters
,”
J. Chem. Phys.
124
,
114309
(
2006
).
18.
M. P.
Johansson
,
A.
Lechtken
,
D.
Schooss
,
M. M.
Kappes
, and
F.
Furche
, “
2d-3d transition of gold cluster anions resolved
,”
Phys. Rev. A
77
,
053202
(
2008
).
19.
W.
Huang
,
S.
Bulusu
,
R.
Pal
,
X. C.
Zeng
, and
L.-S.
Wang
, “
Structural transition of gold nanoclusters: From the golden cage to the golden pyramid
,”
ACS Nano
3
,
1225
1230
(
2009
).
20.
R.
Pal
,
L.-M.
Wang
,
W.
Huang
,
L.-S.
Wang
, and
X. C.
Zeng
, “
Structure evolution of gold cluster anions between the planar and cage structures by isoelectronic substitution: Aun (n = 13–15) and MAun (n = 12–14; m = Ag, Cu)
,”
J. Chem. Phys.
134
,
054306
(
2011
).
21.
M. P.
Johansson
,
I.
Warnke
,
A.
Le
, and
F.
Furche
, “
At what size do neutral gold clusters turn three-dimensional?
,”
J. Phys. Chem. C
118
,
29370
29377
(
2014
).
22.
A.
Tanwar
,
E.
Fabiano
,
E. P.
Trevisanutto
,
L.
Chiodo
, and
F.
Della Sala
, “
Accurate ionization potential of gold anionic clusters from density functional theory and many-body perturbation theory
,”
Eur. Phys. J. B
86
,
161
(
2013
).
23.
J.
Li
,
X.
Li
,
H.-J.
Zhai
, and
L.-S.
Wang
, “
Au20: A tetrahedral cluster
,”
Science
299
,
864
867
(
2003
).
24.
J.
Wang
,
J.
Jellinek
,
J.
Zhao
,
Z.
Chen
,
R. B.
King
, and
P.
von RaguéSchleyer
, “
Hollow cages versus space-filling structures for medium-sized gold clusters: The spherical aromaticity of the Au50 cage
,”
J. Phys. Chem. A
109
,
9265
9269
(
2005
).
25.
C. L.
Cleveland
,
U.
Landman
,
M. N.
Shafigullin
,
P. W.
Stephens
, and
R. L.
Whetten
, “
Structural evolution of larger gold clusters
,”
Z. Phys. D: At., Mol. Clusters
40
,
503
508
(
1997
).
26.
C. L.
Cleveland
,
U.
Landman
,
T. G.
Schaaff
,
M. N.
Shafigullin
,
P. W.
Stephens
, and
R. L.
Whetten
, “
Structural evolution of smaller gold nanocrystals: The truncated decahedral motif
,”
Phys. Rev. Lett.
79
,
1873
1876
(
1997
).
27.
V.
Petkov
,
Y.
Peng
,
G.
Williams
,
B.
Huang
,
D.
Tomalia
, and
Y.
Ren
, “
Structure of gold nanoparticles suspended in water studied by x-ray diffraction and computer simulations
,”
Phys. Rev. B
72
,
195402
(
2005
).
28.
Z.
Duan
,
Y.
Li
,
J.
Timoshenko
,
S. T.
Chill
,
R. M.
Anderson
,
D. F.
Yancey
,
A. I.
Frenkel
,
R. M.
Crooks
, and
G.
Henkelman
, “
A combined theoretical and experimental EXAFS study of the structure and dynamics of Au147 nanoparticles
,”
Catal. Sci. Technol.
6
,
6879
6885
(
2016
).
29.
Z. Y.
Li
,
N. P.
Young
,
M. D.
Vece
,
S.
Palomba
,
R. E.
Palmer
,
A. L.
Bleloch
,
B. C.
Curley
,
R. L.
Johnston
,
J.
Jiang
, and
J.
Yuan
, “
Three-dimensional atomic-scale structure of size-selected gold nanoclusters
,”
Nature
451
,
46
(
2008
).
30.
S. R.
Plant
,
L.
Cao
, and
R. E.
Palmer
, “
Atomic structure control of size-selected gold nanoclusters during formation
,”
J. Am. Chem. Soc.
136
,
7559
7562
(
2014
).
31.
J.
Li
,
D.
Yin
,
C.
Chen
,
Q.
Li
,
L.
Lin
,
R.
Sun
,
S.
Huang
, and
Z.
Wang
, “
Atomic-scale observation of dynamical fluctuation and three-dimensional structure of gold clusters
,”
J. Appl. Phys.
117
,
085303
(
2015
).
32.
Z. W.
Wang
and
R. E.
Palmer
, “
Experimental evidence for fluctuating, chiral-type Au55 clusters by direct atomic imaging
,”
Nano Lett.
12
,
5510
5514
(
2012
).
33.
R.
Ouyang
,
Y.
Xie
, and
D.-e.
Jiang
, “
Global minimization of gold clusters by combining neural network potentials and the basin-hopping method
,”
Nanoscale
7
,
14817
14821
(
2015
).
34.
C. D.
Dong
and
X. G.
Gong
, “
Gold cluster beyond hollow cage: A double shell structure of Au58
,”
J. Chem. Phys.
132
,
104301
(
2010
).
35.
D. M.
Wells
,
G.
Rossi
,
R.
Ferrando
, and
R. E.
Palmer
, “
Metastability of the atomic structures of size-selected gold nanoparticles
,”
Nanoscale
7
,
6498
6503
(
2015
).
36.
M. W.
Finnis
and
J. E.
Sinclair
, “
A simple empirical n-body potential for transition metals
,”
Philos. Mag. A
50
,
45
55
(
1984
).
37.
F.
Ercolessi
,
M.
Parrinello
, and
E.
Tosatti
, “
Simulation of gold in the glue model
,”
Philos. Mag. A
58
,
213
226
(
1988
).
38.
A. P.
Sutton
and
J.
Chen
, “
Long-range finnis-sinclair potentials
,”
Philos. Mag. Lett.
61
,
139
146
(
1990
).
39.
C.
Mottet
,
G.
Tréglia
, and
B.
Legrand
, “
New magic numbers in metallic clusters: An unexpected metal dependence
,”
Surf. Sci.
383
,
L719
L727
(
1997
).
40.
F.
Baletto
,
R.
Ferrando
,
A.
Fortunelli
,
F.
Montalenti
, and
C.
Mottet
, “
Crossover among structural motifs in transition and noble-metal clusters
,”
J. Chem. Phys.
116
,
3856
(
2002
).
41.
T.
Castro
,
R.
Reifenberger
,
E.
Choi
, and
R. P.
Andres
, “
Size-dependent melting temperature of individual nanometer-sized metallic clusters
,”
Phys. Rev. B
42
,
8548
8556
(
1990
).
42.
I. L.
Garzón
and
A.
Posada-Amarillas
, “
Structural and vibrational analysis of amorphous Au55 clusters
,”
Phys. Rev. B
54
,
11796
11802
(
1996
).
43.
H.
Li
,
L.
Li
,
A.
Pedersen
,
Y.
Gao
,
N.
Khetrapal
,
H.
Jónsson
, and
X. C.
Zeng
, “
Magic-number gold nanoclusters with diameters from 1 to 3.5 nm: Relative stability and catalytic activity for co oxidation
,”
Nano Lett.
15
,
682
688
(
2015
).
44.
B. C.
Curley
,
R. L.
Johnston
,
N. P.
Young
,
Z. Y.
Li
,
M.
Di Vece
,
R. E.
Palmer
, and
A. L.
Bleloch
, “
Combining theory and experiment to characterize the atomic structures of surface-deposited Au309 clusters
,”
J. Phys. Chem. C
111
,
17846
17851
(
2007
).
45.
O. D.
Häberlen
,
S.-C.
Chung
,
M.
Stener
, and
N.
Rösch
,
J. Chem. Phys.
106
,
5189
(
1997
).
46.
H.
Häkkinen
,
M.
Moseler
,
O.
Kostko
,
N.
Morgner
,
M. A.
Hoffmann
, and
B. v.
Issendorff
, “
Symmetry and electronic structure of noble-metal nanoparticles and the role of relativity
,”
Phys. Rev. Lett.
93
,
093401
(
2004
).
47.
Y.
Pei
,
N.
Shao
,
Y.
Gao
, and
X. C.
Zeng
, “
Investigating active site of gold nanoparticle Au55(PPh3)12Cl6 in selective oxidation
,”
ACS Nano
4
,
2009
2020
(
2010
).
48.
A. S.
Barnard
and
L. A.
Curtiss
, “
Predicting the shape and structure of face-centered cubic gold nanocrystals smaller than 3 nm
,”
ChemPhysChem
7
,
1544
1553
(
2006
).
49.
I. L.
Garzón
,
J. A.
Reyes-Nava
,
J. I.
Rodríguez-Hernández
,
I.
Sigal
,
M. R.
Beltrán
, and
K.
Michaelian
, “
Chirality in bare and passivated gold nanoclusters
,”
Phys. Rev. B
66
,
073403
(
2002
).
50.
I. L.
Garzón
,
K.
Michaelian
,
M. R.
Beltrán
,
A.
Posada-Amarillas
,
P.
Ordejón
,
E.
Artacho
,
D.
Sánchez-Portal
, and
J. M.
Soler
, “
Lowest energy structures of gold nanoclusters
,”
Phys. Rev. Lett.
81
,
1600
1603
(
1998
).
51.
S.
Vergara
,
D. A.
Lukes
,
M. W.
Martynowycz
,
U.
Santiago
,
G.
Plascencia-Villa
,
S. C.
Weiss
,
M. J.
de la Cruz
,
D. M.
Black
,
M. M.
Alvarez
,
X.
López-Lozano
,
C. O.
Barnes
,
G.
Lin
,
H.-C.
Weissker
,
R. L.
Whetten
,
T.
Gonen
,
M. J.
Yacaman
, and
G.
Calero
, “
Microed structure of Au146(p-MBA)57 at subatomic resolution reveals a twinned FCC cluster
,”
J. Phys. Chem. Lett.
8
,
5523
5530
(
2017
).
52.
M.
Azubel
,
A. L.
Koh
,
K.
Koyasu
,
T.
Tsukuda
, and
R. D.
Kornberg
, “
Structure determination of a water-soluble 144-gold atom particle at atomic resolution by aberration-corrected electron microscopy
,”
ACS Nano
11
,
11866
11871
(
2017
).
53.
T.-R.
Tero
,
S.
Malola
,
B.
Koncz
,
E.
Pohjolainen
,
S.
Lautala
,
S.
Mustalahti
,
P.
Permi
,
G.
Groenhof
,
M.
Pettersson
, and
H.
Häkkinen
, “
Dynamic stabilization of the ligand–metal interface in atomically precise gold nanoclusters Au68 and Au144 protected by meta-mercaptobenzoic acid
,”
ACS Nano
11
,
11872
11879
(
2017
).
54.
Z. H.
Stachurski
,
Solids: Structure and Properties
(
Wiley
,
2015
).
55.
M.
Goldstein
,
R.
Simha
, and
New York Academy of Sciences
,
The Glass Transition and the Nature of the Glassy State
, Annals Series (
New York Academy of Sciences
,
1976
), Vol. 279.
56.
P.
Ganesh
and
M.
Widom
, “
Signature of nearly icosahedral structures in liquid and supercooled liquid copper
,”
Phys. Rev. B
74
,
134205
(
2006
).
57.
J. L.
Finney
, “
Random packings and the structure of simple liquids-the geometry of random close packing
,”
Proc. R. Soc. London, Ser. A
319
,
479
493
(
1970
).
58.
M.
Tanemura
,
Y.
Hiwatari
,
H.
Matsuda
,
T.
Ogawa
,
N.
Ogita
, and
A.
Ueda
, “
Geometrical analysis of crystallization of the soft-core model
,”
Prog. Theor. Phys.
58
,
1079
1095
(
1977
).
59.
P. J.
Steinhardt
,
D. R.
Nelson
, and
M.
Ronchetti
, “
Bond-orientational order in liquids and glasses
,”
Phys. Rev. B
28
,
784
805
(
1983
).
60.
A.
Hannemann
,
J. C.
Schön
,
M.
Jansen
,
H.
Putz
, and
T.
Lengauer
, “
Modeling amorphous Si3B3N7: Structure and elastic properties
,”
Phys. Rev. B
70
,
144201
(
2004
).
61.
K.
Vishwanathan
and
M.
Springborg
, “
Vibrational heat capacity of gold cluster AuN = 14 at low temperatures
,”
J. Phys. Chem. Biophys.
6
,
1
5
(
2016
).
62.
K.
Vishwanathan
and
M.
Springborg
, “
Effect of size, temperature, and structure on the vibrational heat capacity of small neutral gold clusters
,”
J. Mater. Sci. Eng.
6
,
325
(
2017
).
63.
J. P.
Rose
and
R. S.
Berry
, “
(KCl)32 and the possibilities for glassy clusters
,”
J. Chem. Phys.
98
,
3262
3274
(
1993
).
64.
J. P.
Rose
and
R. S.
Berry
, “
The possibilities for glassy clusters: (KCl)32
,”
Z. Phys. D: At., Mol. Clusters
26
,
178
180
(
1993
).
65.
E.
Flikkema
and
S. T.
Bromley
, “
Defective to fully coordinated crossover in complex directionally bonded nanoclusters
,”
Phys. Rev. B
80
,
035402
(
2009
).
66.
O.
Lamiel-Garcia
,
A.
Cuko
,
M.
Calatayud
,
F.
Illas
, and
S. T.
Bromley
, “
Predicting size-dependent emergence of crystallinity in nanomaterials: Titania nanoclusters versus nanocrystals
,”
Nanoscale
9
,
1049
1058
(
2017
).
67.
P.
Koskinen
and
T.
Korhonen
, “
Plenty of motion at the bottom: Atomically thin liquid gold membrane
,”
Nanoscale
7
,
10140
10145
(
2015
).
68.
N.
Tarrat
,
M.
Rapacioli
,
J.
Cuny
,
J.
Morillo
,
J.-L.
Heully
, and
F.
Spiegelman
, “
Global optimization of neutral and charged 20- and 55-atom silver and gold clusters at the DFTB level
,”
Comput. Theor. Chem.
1107
,
102
114
(
2017
), structure prediction of nanoclusters from global optimization techniques: Computational strategies.
69.
H.
Baek
,
J.
Moon
, and
J.
Kim
, “
Benchmark study of density functional theory for neutral gold clusters, AuN (n = 2–8)
,”
J. Phys. Chem. A
121
,
2410
2419
(
2017
).
70.
M.
Rapacioli
,
A.
Simon
,
L.
Dontot
, and
F.
Spiegelman
, “
Extensions of DFTB to investigate molecular complexes and clusters
,”
Phys. Status Solidi B
249
,
245
258
(
2012
).
71.
D.
Porezag
,
T.
Frauenheim
,
T.
Köhler
,
G.
Seifert
, and
R.
Kaschner
, “
Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon
,”
Phys. Rev. B
51
,
12947
12957
(
1995
).
72.
G.
Seifert
,
D.
Porezag
, and
T.
Frauenheim
, “
Calculations of molecules, clusters, and solids with a simplified LCAO-DFT-LDA scheme
,”
Int. J. Quantum Chem.
58
,
185
192
(
1996
).
73.
M.
Elstner
,
D.
Porezag
,
G.
Jungnickel
,
J.
Elsner
,
M.
Haugk
,
T.
Frauenheim
,
S.
Suhai
, and
G.
Seifert
, “
Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties
,”
Phys. Rev. B
58
,
7260
7268
(
1998
).
74.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
B871
(
1964
).
75.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
76.
L. F. L.
Oliveira
,
N.
Tarrat
,
J.
Cuny
,
J.
Morillo
,
D.
Lemoine
,
F.
Spiegelman
, and
M.
Rapacioli
, “
Benchmarking density functional based tight-binding for silver and gold materials: From small clusters to bulk
,”
J. Phys. Chem. A
120
,
8469
8483
(
2016
).
77.
P.
Koskinen
,
H.
Häkkinen
,
G.
Seifert
,
S.
Sanna
,
T.
Frauenheim
, and
M.
Moseler
, “
Density-functional based tight-binding study of small gold clusters
,”
New J. Phys.
8
,
9
(
2006
).
78.
A.
Fihey
,
C.
Hettich
,
J.
Touzeau
,
F.
Maurel
,
A.
Perrier
,
C.
Köhler
,
B.
Aradi
, and
T.
Frauenheim
, “
SCC-DFTB parameters for simulating hybrid gold-thiolates compounds
,”
J. Comput. Chem.
36
,
2075
2087
(
2015
).
79.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
,
558
561
(
1993
).
80.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
81.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996
).
82.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
17979
(
1994
).
83.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
1775
(
1999
).
84.
J. P.
Perdew
,
A.
Ruzsinszky
,
G. I.
Csonka
,
O. A.
Vydrov
,
G. E.
Scuseria
,
L. A.
Constantin
,
X.
Zhou
, and
K.
Burke
, “
Restoring the density-gradient expansion for exchange in solids and surfaces
,”
Phys. Rev. Lett.
100
,
136406
(
2008
).
85.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
, “
Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation
,”
Phys. Rev. B
46
,
6671
6687
(
1992
).
86.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
87.
Y.
Zhang
and
W.
Yang
, “
Comment on “generalized gradient approximation made simple”
,”
Phys. Rev. Lett.
80
,
890
(
1998
).
88.
D. M.
Ceperley
and
B. J.
Alder
, “
Ground state of the electron gas by a stochastic method
,”
Phys. Rev. Lett.
45
,
566
569
(
1980
).
89.
M.
Dion
,
H.
Rydberg
,
E.
Schröder
,
D. C.
Langreth
, and
B. I.
Lundqvist
, “
Van der waals density functional for general geometries
,”
Phys. Rev. Lett.
92
,
246401
(
2004
).
90.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
O.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
, gaussian 09, Revision E.01,
Gaussian, Inc.
,
Wallingford, CT
,
2009
.
91.
P.
Schwerdtfeger
,
M.
Dolg
,
W. H. E.
Schwarz
,
G. A.
Bowmaker
, and
P. D. W.
Boyd
, “
Relativistic effects in gold chemistry. I. Diatomic gold compounds
,”
J. Chem. Phys.
91
,
1762
(
1989
).
92.
Y.
Sugita
and
Y.
Okamoto
, “
Replica-exchange molecular dynamics method for protein folding
,”
Chem. Phys. Lett.
314
,
141
151
(
1999
).
93.
S.
Nosé
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
,
511
(
1984
).
94.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
1697
(
1985
).
95.
T.
Heine
,
M.
Rapacioli
,
S.
Patchkovskii
,
J.
Cuny
,
J.
Frenzel
,
A.
Koster
,
P.
Calaminici
,
H. A.
Duarte
,
S.
Escalante
,
R.
Flores-Moreno
,
A.
Goursot
,
J.
Reveles
,
D.
Salahub
, and
A.
Vela
(
2015
), deMonNano, http://demon-nano.ups-tlse.fr/, 1st Sept 2016.
96.
L. F. L.
Oliveira
,
J.
Cuny
,
M.
Moriniere
,
L.
Dontot
,
A.
Simon
,
F.
Spiegelman
, and
M.
Rapacioli
, “
Phase changes of the water hexamer and octamer in the gas phase and adsorbed on polycyclic aromatic hydrocarbons
,”
Phys. Chem. Chem. Phys.
17
,
17079
17089
(
2015
).
97.
J.-O.
Joswig
and
T.
Lorenz
, “
Detecting and quantifying geometric features in large series of cluster structures
,”
Zeitschrift für Physikalische Chemie
230
,
1057
1066
(
2016
).
98.
N.
Russo
and
D. R.
Salahub
,
Metal-Ligand Interactions in Chemistry, Physics and Biology
(
Kluwer Academic Publishers
,
1998
).
99.
J.
Schön
and
M.
Jansen
, “
Determination, prediction, and understanding of structures, using the energy landscapes of chemical systems
,”
Z. Kristallogr. - Cryst. Mater.
216
,
307
(
2009
).
100.
D.
Wales
, “
Index
,” in
Energy Landscapes: Applications to Clusters, Biomolecules and Glasses
, Cambridge Molecular Science (
Cambridge University Press
,
2004
).
101.
O. M.
Becker
and
M.
Karplus
, “
The topology of multidimensional potential energy surfaces: Theory and application to peptide structure and kinetics
,”
J. Chem. Phys.
106
,
1495
1517
(
1997
).
102.
D. J.
Wales
,
M. A.
Miller
, and
T. R.
Walsh
, “
Archetypal energy landscapes
,”
Nature
394
,
758
(
1998
).
103.
S.
Neelamraju
,
C.
Oligschleger
, and
J. C.
Schön
, “
The threshold algorithm: Description of the methodology and new developments
,”
J. Chem. Phys.
147
,
152713
(
2017
).
104.
J. P.
Doye
and
D.
Wales
, “
Structural consequences of the range of the interatomic potential a menagerie of clusters
,”
J. Chem. Soc., Faraday Trans.
93
,
4233
4243
(
1997
).
105.
D. M.
Foster
,
R.
Ferrando
, and
R. E.
Palmer
, “
Experimental determination of the energy difference between competing isomers of deposited, size-selected gold nanoclusters
,”
Nat. Commun.
9
,
1323
(
2018
).
106.
D.
Schebarchov
,
F.
Baletto
, and
D. J.
Wales
, “
Structure, thermodynamics, and rearrangement mechanisms in gold clusters—insights from the energy landscapes framework
,”
Nanoscale
10
,
2004
2016
(
2018
).
107.
S.
Jindal
,
S.
Chiriki
, and
S. S.
Bulusu
, “
Spherical harmonics based descriptor for neural network potentials: Structure and dynamics of Au147 nanocluster
,”
J. Chem. Phys.
146
,
204301
(
2017
).

Supplementary Material

You do not currently have access to this content.