Coupled excitonic structures are found in natural and artificial light harvesting systems where optical transitions link different excitation manifolds. In systems with symmetry, some optical transitions are allowed, while others are forbidden. Here we examine an excitonic ring structure and identify an accidental degeneracy between two categories of double-excitation eigenstates with distinct symmetries and optical transition properties. To understand the accidental degeneracy, a complete selection rule between two arbitrary excitation manifolds is derived with a physically motivated proof. Remarkably, symmetry analysis shows that the lack of certain symmetry elements in the Hamiltonian is responsible for this degeneracy, which is unique to rings with size N = 4l + 2 (l being an integer).

1.
2.
F.
Leyvraz
,
A.
Frank
,
R.
Lemus
, and
M. V.
Andrés
,
Am. J. Phys.
65
(
11
),
1087
1094
(
1997
).
3.
M. H.
Al-Hashimi
and
U. J.
Wiese
,
Ann. Phys.
324
(
2
),
343
360
(
2009
).
4.
J.-M.
Hou
and
W.
Chen
,
Front. Phys.
13
(
1
),
130301
(
2017
).
5.
Z.-G.
Chen
,
X.
Ni
,
Y.
Wu
,
C.
He
,
X.-C.
Sun
,
L.-Y.
Zheng
,
M.-H.
Lu
, and
Y.-F.
Chen
,
Sci. Rep.
4
,
4613
(
2014
).
6.
X.
Huang
,
Y.
Lai
,
Z. H.
Hang
,
H.
Zheng
, and
C. T.
Chan
,
Nat. Mater.
10
,
582
(
2011
).
7.
J.
Thingna
,
D.
Manzano
, and
J.
Cao
,
Sci. Rep.
6
,
28027
(
2016
).
8.
A.
Ishizaki
and
G. R.
Fleming
,
Annu. Rev. Condens. Matter Phys.
3
,
333
(
2012
).
9.
G. S.
Engel
,
T. R.
Calhoun
,
E. L.
Read
,
T. K.
Ahn
,
T.
Mancal
,
Y. C.
Cheng
,
R. E.
Blankenship
, and
G. R.
Fleming
,
Nature
446
(
7137
),
782
786
(
2007
).
10.
H.
Lee
,
Y. C.
Cheng
, and
G. R.
Fleming
,
Science
316
(
5830
),
1462
1465
(
2007
).
11.
M.
Mohseni
,
P.
Rebentrost
,
S.
Lloyd
, and
A.
Aspuru-Guzik
,
J. Chem. Phys.
129
(
17
),
174106
(
2008
).
12.
S.
Mukamel
,
J. Chem. Phys.
132
(
24
),
241105
(
2010
).
13.
J.
Cao
and
R. J.
Silbey
,
J. Phys. Chem. A
113
(
50
),
13825
13838
(
2009
).
14.
F.
Caruso
,
A. W.
Chin
,
A.
Datta
,
S. F.
Huelga
, and
M. B.
Plenio
,
J. Chem. Phys.
131
(
10
),
105106
(
2009
).
15.
E.
Collini
,
C. Y.
Wong
,
K. E.
Wilk
,
P. M. G.
Curmi
,
P.
Brumer
, and
G. D.
Scholes
,
Nature
463
(
7281
),
644
647
(
2010
).
16.
J.
Leon-Montiel Rde
,
I.
Kassal
, and
J. P.
Torres
,
J. Phys. Chem. B
118
(
36
),
10588
10594
(
2014
).
17.
L. D.
Book
,
A. E.
Ostafin
,
N.
Ponomarenko
,
J. R.
Norris
, and
N. F.
Scherer
,
J. Phys. Chem. B
104
(
34
),
8295
8307
(
2000
).
18.
A. F.
Fidler
,
V. P.
Singh
,
P. D.
Long
,
P. D.
Dahlberg
and
G. S.
Engel
,
Nat. Commun.
5
,
3286
(
2014
).
19.
L. A.
Pachon
and
P.
Brumer
,
Phys. Chem. Chem. Phys.
14
(
29
),
10094
10108
(
2012
).
20.
S.
Jang
and
Y.-C.
Cheng
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
3
(
1
),
84
104
(
2013
).
21.
M. O.
Scully
,
Phys. Rev. Lett.
104
(
20
),
207701
(
2010
).
22.
M. O.
Scully
,
K. R.
Chapin
,
K. E.
Dorfman
,
M. B.
Kim
, and
A.
Svidzinsky
,
Proc. Natl. Acad. Sci. U. S. A.
108
(
37
),
15097
15100
(
2011
).
23.
E.
Harel
,
J. Chem. Phys.
136
(
17
),
174104
(
2012
).
24.
Z.
Hu
,
G. S.
Engel
,
F. H.
Alharbi
, and
S.
Kais
,
J. Chem. Phys.
148
(
6
),
064304
(
2018
).
25.
C.
Creatore
,
M. A.
Parker
,
S.
Emmott
, and
A. W.
Chin
,
Phys. Rev. Lett.
111
(
25
),
253601
(
2013
).
26.
K. D. B.
Higgins
,
B. W.
Lovett
, and
E. M.
Gauger
,
J. Phys. Chem. C
121
(
38
),
20714
20719
(
2017
).
27.
C.
Zhou
and
R. N.
Bhatt
,
Phys. Rev. B
68
(
4
),
045101
(
2003
).
28.
T.
Tokihiro
,
Y.
Manabe
, and
E.
Hanamura
,
Phys. Rev. B
47
(
4
),
2019
2030
(
1993
).

Supplementary Material

You do not currently have access to this content.