In a theoretical and simulation study, active Brownian particles (ABPs) in three-dimensional bulk systems are exposed to time-varying sinusoidal activity waves that are running through the system. A linear response (Green-Kubo) formalism is applied to derive fully analytical expressions for the torque-free polarization profiles of non-interacting particles. The activity waves induce fluxes that strongly depend on the particle size and may be employed to de-mix mixtures of ABPs or to drive the particles into selected areas of the system. Three-dimensional Langevin dynamics simulations are carried out to verify the accuracy of the linear response formalism, which is shown to work best when the particles are small (i.e., highly Brownian) or operating at low activity levels.

1.
G.
Fenteany
and
M.
Glogauer
,
Curr. Opin. Hematol.
11
,
15
(
2004
).
2.
Y.
Kanai
,
N.
Dohmae
, and
N.
Hirokawa
,
Neuron
43
,
513
(
2004
).
3.
H. C.
Berg
,
E. Coli in Motion
(
Springer Verlag
,
Heidelberg, Germany
,
2004
).
4.
S. J.
Ebbens
and
J. R.
Howse
,
Soft Matter
6
,
726
(
2010
).
5.
D.
Yamamoto
and
A.
Shioi
,
KONA Powder Part. J.
32
,
2
(
2015
).
6.
L. K. E. A.
Abdelmohsen
,
F.
Peng
,
Y.
Tu
, and
D. A.
Wilson
,
J. Mater. Chem. B
2
,
2395
(
2014
).
7.
W.
Gao
and
J.
Wang
,
ACS Nano
8
,
3170
(
2014
).
8.
J. R.
Howse
,
R. A. L.
Jones
,
A. J.
Ryan
,
T.
Gough
,
R.
Vafabakhsh
, and
R.
Golestanian
,
Phys. Rev. Lett.
99
,
048102
(
2007
).
9.
W.
Gao
,
A.
Pei
,
R.
Dong
, and
J.
Wang
,
J. Am. Chem. Soc.
136
,
2276
(
2014
).
10.
F.
Peng
,
Y.
Tu
,
J. C. M.
van Hest
, and
D. A.
Wilson
,
Angew. Chem.
127
,
11828
(
2015
).
11.
P. K.
Ghosh
,
Y.
Li
,
F.
Marchesoni
, and
F.
Nori
,
Phys. Rev. E
92
,
012114
(
2015
).
12.
H. D.
Vuijk
,
A.
Sharma
,
D.
Mondal
,
J.-U.
Sommer
, and
H.
Merlitz
,
Phys. Rev. E
97
,
042612
(
2018
).
13.
C.
Lozano
,
B.
ten Hagen
,
H.
Löwen
, and
C.
Bechinger
,
Nat. Commun.
7
,
12828
(
2016
).
14.
C.
Bechinger
,
R. D.
Leonardo
,
H.
Löwen
,
C.
Reichhardt
,
G.
Volpe
, and
G.
Volpe
,
Rev. Mod. Phys.
88
,
045006
(
2016
).
15.
A.
Sharma
and
J.
Brader
,
J. Chem. Phys.
145
,
161101
(
2016
).
16.
A.
Sharma
and
J.
Brader
,
Phys. Rev. E
96
,
032604
(
2017
).
17.
A.
Geiseler
,
P.
Hänggi
,
F.
Marchesoni
,
C.
Mulhern
, and
S.
Savel’ev
,
Phys. Rev. E
94
,
012613
(
2016
).
18.
A.
Geiseler
,
P.
Hänggi
, and
F.
Marchesoni
,
Sci. Rep.
7
,
41884
(
2017
).
20.
H.
Merlitz
,
C.
Wu
, and
J.-U.
Sommer
,
Soft Matter
13
,
3726
(
2017
).
21.
C. W.
Gardiner
,
Stochastic Methods of Theoretical Physics
(
Springer
,
Berlin
,
1985
), Vol. 3.
22.
P. M.
Morse
,
H.
Feshbach
 et al.,
Methods of Theoretical Physics
(
McGraw-Hill
,
New York
,
1953
), Vol. 1.
23.
J. M.
Brader
,
M. E.
Cates
, and
M.
Fuchs
,
Phys. Rev. E
86
,
021403
(
2012
).
24.
J.-P.
Hansen
and
I.
McDonald
,
Theory of Simple Liquids
(
Elsevier
,
New York
,
1990
), Vol. 3.
25.
T.-C.
Lee
,
M.
Alarcon-Correa
,
C.
Mikch
,
K.
Hahn
,
J. F.
Gibbs
, and
P.
Fischer
,
Nano Lett.
14
,
2407
(
2014
).
You do not currently have access to this content.