The vdW-DF-cx0 exchange-correlation hybrid design [K. Berland et al., J. Chem. Phys. 146, 234106 (2017)] has a truly nonlocal correlation component and aims to facilitate concurrent descriptions of both covalent and non-covalent molecular interactions. The vdW-DF-cx0 design mixes a fixed ratio, a, of the Fock exchange into the consistent-exchange van der Waals density functional, vdW-DF-cx [K. Berland and P. Hyldgaard, Phys. Rev. B 89, 035412 (2014)]. The mixing value a is sometimes taken as a semi-empirical parameter in hybrid formulations. Here, instead, we assert a plausible optimum average a value for the vdW-DF-cx0 design from a formal analysis; A new, independent determination of the mixing a is necessary since the Becke fit [A. D. Becke, J. Chem. Phys. 98, 5648 (1993)], yielding a′ = 0.2, is restricted to semilocal correlation and does not reflect non-covalent interactions. To proceed, we adapt the so-called two-legged hybrid construction [K. Burke et al., Chem. Phys. Lett. 265, 115 (1997)] to a starting point in the vdW-DF-cx functional. For our approach, termed vdW-DF-tlh, we estimate the properties of the adiabatic-connection specification of the exact exchange-correlation functional, by combining calculations of the Fock exchange and of the coupling-constant variation in vdW-DF-cx. We find that such vdW-DF-tlh hybrid constructions yield accurate characterizations of molecular interactions (even if they lack self-consistency). The accuracy motivates trust in the vdW-DF-tlh determination of system-specific values of the Fock-exchange mixing. We find that an average value a′ = 0.2 best characterizes the vdW-DF-tlh description of covalent and non-covalent interactions, although there exists some scatter. This finding suggests that the original Becke value, a′ = 0.2, also represents an optimal average Fock-exchange mixing for the new, truly nonlocal-correlation hybrids. To enable self-consistent calculations, we furthermore define and test a zero-parameter hybrid functional vdW-DF-cx0p (having fixed mixing a′ = 0.2) and document that this truly nonlocal correlation hybrid works for general molecular interactions (at reference and at relaxed geometries). It is encouraging that the vdW-DF-cx0p functional remains useful also for descriptions of some extended systems.

1.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
2.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
3.
K.
Kim
and
K. D.
Jordan
,
J. Phys. Chem.
98
,
10089
(
1994
).
4.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
(
1994
).
5.
A. D.
Becke
,
J. Chem. Phys.
140
,
18A301
(
2014
).
6.
K.
Berland
,
Y.
Jiao
,
J.-H.
Lee
,
T.
Rangel
,
J. B.
Neaton
, and
P.
Hyldgaard
,
J. Chem. Phys.
146
,
234106
(
2017
).
7.
D. C.
Langreth
and
J. P.
Perdew
,
Solid State Commun.
17
,
1425
(
1975
).
8.
O.
Gunnarsson
and
B. I.
Lundqvist
,
Phys. Rev. B
13
,
4274
(
1976
).
9.
D. C.
Langreth
and
J. P.
Perdew
,
Phys. Rev. B
15
,
2884
(
1977
).
10.
A.
Görling
and
M.
Levy
,
Phys. Rev. B
47
,
13105
(
1993
).
11.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
,
J. Chem. Phys.
105
,
9982
(
1996
).
12.
K.
Burke
,
M.
Ernzerhof
, and
J. P.
Perdew
,
Chem. Phys. Lett.
265
,
115
(
1997
).
13.
M.
Ernzerhof
,
J. P.
Perdew
, and
K.
Burke
,
Int. J. Quantum Chem.
64
,
285
(
1997
).
14.
D. C.
Langreth
and
J. P.
Perdew
,
Phys. Rev. B
21
,
5469
(
1980
).
15.
D. C.
Langreth
and
M. J.
Mehl
,
Phys. Rev. Lett.
47
,
446
(
1981
).
16.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
33
,
8800
(
1986
).
17.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
46
,
12947
(
1992
).
18.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
19.
J. P.
Perdew
,
A.
Ruzsinszky
,
G. I.
Csonka
,
O. A.
Vydrov
,
G. E.
Scuseria
,
L. A.
Constantin
,
X.
Zhou
, and
K.
Burke
,
Phys. Rev. Lett.
100
,
136406
(
2008
).
20.
M.
Dion
,
H.
Rydberg
,
E.
Schröder
,
D. C.
Langreth
, and
B. I.
Lundqvist
,
Phys. Rev. Lett.
92
,
246401
(
2004
).
21.
T.
Thonhauser
,
V. R.
Cooper
,
S.
Li
,
A.
Puzder
,
P.
Hyldgaard
, and
D. C.
Langreth
,
Phys. Rev. B
76
,
125112
(
2007
).
22.
O. A.
Vydrov
and
T.
Van Voorhis
,
J. Chem. Phys.
133
,
244103
(
2010
).
23.
K.
Berland
and
P.
Hyldgaard
,
Phys. Rev. B
89
,
035412
(
2014
).
24.
P.
Hyldgaard
,
K.
Berland
, and
E.
Schröder
,
Phys. Rev. B
90
,
075148
(
2014
).
25.
T.
Thonhauser
,
S.
Zuluaga
,
C. A.
Arter
,
K.
Berland
,
E.
Schröder
, and
P.
Hyldgaard
,
Phys. Rev. Lett.
115
,
136402
(
2015
).
26.
H.
Peng
,
Z.-H.
Yang
,
J.
Sun
, and
J. P.
Perdew
,
Phys. Rev. X
6
,
041005
(
2016
).
27.
M.
Levy
and
J. P.
Perdew
,
Phys. Rev. A
32
,
2010
(
1985
).
29.
M.
Levy
, in
Density Functional Theory
, edited by
E. K. U.
Gross
and
R. M.
Dreizler
(
Plenum Press
,
1995
), pp.
11
31
.
30.
Y.
Jiao
,
E.
Schröder
, and
P.
Hyldgaard
,
Phys. Rev. B
97
,
085115
(
2018
).
31.
J. P.
Perdew
,
K.
Burke
, and
Y.
Wang
,
Phys. Rev. B
54
,
16533
(
1996
).
32.
K.
Berland
,
V. R.
Cooper
,
K.
Lee
,
E.
Schröder
,
T.
Thonhauser
,
P.
Hyldgaard
, and
B. I.
Lundqvist
,
Rep. Prog. Phys.
78
,
066501
(
2015
).
33.
K.
Berland
,
C. A.
Arter
,
V. R.
Cooper
,
K.
Lee
,
B. I.
Lundqvist
,
E.
Schröder
,
T.
Thonhauser
, and
P.
Hyldgaard
,
J. Chem. Phys.
140
,
18A539
(
2014
).
34.
Y.
Jiao
,
F.
Zhang
,
M.
Grätzel
, and
S.
Meng
,
Adv. Funct. Mater.
23
,
424
(
2013
).
35.
X.
Wang
,
K.
Esfarjani
, and
M.
Zebarjadi
,
J. Phys. Chem. C
121
,
15529
(
2017
).
36.
K.
Berland
,
E.
Londero
,
E.
Schröder
, and
P.
Hyldgaard
,
Phys. Rev. B
88
,
045431
(
2013
).
37.
K.
Burke
and
L. O.
Wagner
,
Int. J. Quantum Chem.
113
,
96
(
2013
).
38.
L.
Goerigk
,
A.
Hansen
,
C.
Bauer
,
S.
Ehrlich
,
A.
Najibi
, and
S.
Grimme
,
Phys. Chem. Chem. Phys.
19
,
32184
(
2017
).
39.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
, and
J. A.
Pople
,
J. Chem. Phys.
106
,
1063
(
1997
).
40.
G. I.
Csonka
,
J. P.
Perdew
,
A.
Ruzsinszky
,
P. H. T.
Philipsen
,
S.
Lebègue
,
J.
Paier
,
O. A.
Vydrov
, and
J. G.
Ángyán
,
Phys. Rev. B
79
,
155107
(
2009
).
41.
H.
Rydberg
,
M.
Dion
,
N.
Jacobson
,
E.
Schröder
,
P.
Hyldgaard
,
S. I.
Simak
,
D. C.
Langreth
, and
B. I.
Lundqvist
,
Phys. Rev. Lett.
91
,
126402
(
2003
).
42.
K.
Lee
,
È. D.
Murray
,
L.
Kong
,
B. I.
Lundqvist
, and
D. C.
Langreth
,
Phys. Rev. B
82
,
081101
(
2010
).
43.
G. D.
Mahan
,
J. Chem. Phys.
43
,
1569
(
1965
).
44.
A. C.
Maggs
and
N. W.
Ashcroft
,
Phys. Rev. Lett.
59
,
113
(
1987
).
45.
K.
Rapcewicz
and
N. W.
Ashcroft
,
Phys. Rev. B
44
,
4032
(
1991
).
46.
Y.
Andersson
,
D. C.
Langreth
, and
B. I.
Lundqvist
,
Phys. Rev. Lett.
76
,
102
(
1996
).
47.
M.
Dion
,
H.
Rydberg
,
E.
Schröder
,
D. C.
Langreth
, and
B. I.
Lundqvist
,
Phys. Rev. Lett.
95
,
109902(E)
(
2005
).
48.
V. R.
Cooper
,
Phys. Rev. B
81
,
161104
(
2010
).
49.
J.
Klimeš
,
D. R.
Bowler
, and
A.
Michaelides
,
J. Phys.: Condens. Matter
22
,
022201
(
2010
).
50.
J.
Klimeš
,
D. R.
Bowler
, and
A.
Michaelides
,
Phys. Rev. B
83
,
195131
(
2011
).
51.
52.
G.
Román-Pérez
and
J. M.
Soler
,
Phys. Rev. Lett.
103
,
096102
(
2009
).
53.
A.
Hjorth Larsen
,
M.
Kuisma
,
J.
Löfgren
,
Y.
Pouillon
,
P.
Erhart
, and
P.
Hyldgaard
,
Modell. Simul. Mater. Sci. Eng.
25
,
065004
(
2017
).
54.
F.
Tran
,
J.
Stelzl
,
D.
Koller
,
T.
Ruh
, and
P.
Blaha
,
Phys. Rev. B
96
,
054103
(
2017
).
55.
D. C.
Langreth
,
B. I.
Lundqvist
,
S. D.
Chakarova-Käck
,
V. R.
Cooper
,
M.
Dion
,
P.
Hyldgaard
,
A.
Kelkkanen
,
J.
Kleis
,
L.
Kong
,
S.
Li
,
P. G.
Moses
,
E.
Murray
,
A.
Puzder
,
H.
Rydberg
,
E.
Schröder
, and
T.
Thonhauser
,
J. Phys.: Condens. Matter
21
,
084203
(
2009
).
56.
J.
Klimeš
and
A.
Michaelides
,
J. Chem. Phys.
137
,
120901
(
2012
).
57.
O. A.
Vydrov
and
T.
Van Voorhis
,
Phys. Rev. Lett.
103
,
063004
(
2009
).
58.
R.
Sabatini
,
T.
Gorni
, and
S.
de Gironcoli
,
Phys. Rev. B
87
,
041108(R)
(
2013
).
59.
K.
Berland
, “
Connected by voids: Interactions and screening in sparse matter
,” Ph.D. thesis,
Department of Microtechnology and Nanoscience – MC2, Chalmers University of Technology
,
Göteborg, Sweden
,
2012
.
60.
K.
Berland
and
P.
Hyldgaard
,
Phys. Rev. B
87
,
205421
(
2013
).
61.
T.
Björkman
,
J. Chem. Phys.
141
,
074708
(
2014
).
62.
P.
Erhart
,
P.
Hyldgaard
, and
D.
Lindroth
,
Chem. Mater.
27
,
5511
(
2015
).
63.
R. C.
Clay
,
M.
Holzmann
,
D. M.
Ceperley
, and
M. A.
Morales
,
Phys. Rev. B
93
,
035121
(
2016
).
64.
A.
Ambrosetti
and
P. L.
Silvestrelli
,
Phys. Rev. B
94
,
045124
(
2016
).
65.
M.
Hellström
,
I.
Beinik
,
P.
Broqvist
,
J. V.
Lauritsen
, and
K.
Hermansson
,
Phys. Rev. B
94
,
245433
(
2016
).
66.
D. O.
Lindroth
and
P.
Erhart
,
Phys. Rev. B
94
,
115205
(
2016
).
67.
J.
Löfgren
,
H.
Grönbeck
,
L.
Moth-Poulsen
, and
P.
Erhart
,
J. Phys. Chem. C
120
,
12059
(
2016
).
68.
T.
Rangel
,
K.
Berland
,
S.
Sharifzadeh
,
F.
Brown-Altvater
,
K.
Lee
,
P.
Hyldgaard
,
L.
Kronik
, and
J. B.
Neaton
,
Phys. Rev. B
93
,
115206
(
2016
).
69.
F.
Brown-Altvater
,
T.
Rangel
, and
J. B.
Neaton
,
Phys. Rev. B
93
,
195206
(
2016
).
70.
L.
Gharaee
,
P.
Erhart
, and
P.
Hyldgaard
,
Phys. Rev. B
95
,
085147
(
2017
).
71.
G. G.
Kebede
,
D.
Spångberg
,
P. D.
Mitev
,
P.
Broqvist
, and
K.
Hermansson
,
J. Chem. Phys.
146
,
064703
(
2017
).
72.
P. A. T.
Olsson
,
E.
Schröder
,
P.
Hyldgaard
,
M.
Kroon
,
E.
Andreasson
, and
E.
Bergvall
,
Polymer
121
,
234
(
2017
).
73.
B.
Borca
,
T.
Michnowicz
,
R.
Petuya
,
M.
Pristl
,
V.
Schendel
,
I.
Pentegov
,
U.
Kraft
,
H.
Klauk
,
P.
Wahl
,
R.
Gutzler
,
A.
Arnau
,
U.
Schlickum
, and
K.
Kern
,
ACS Nano
11
,
4703
(
2017
).
74.
I.
Cabria
,
M. J.
Lopez
, and
J. A.
Alonso
,
J. Chem. Phys.
146
,
214104
(
2017
).
75.
I.
Loncaric
,
J.
Popovic
,
V.
Despoja
,
S.
Burazer
,
I.
Grgicevic
,
D.
Popovic
, and
Z.
Skoko
,
Cryst. Growth Des.
17
,
4445
(
2017
).
76.
J.
Claudot
,
W. J.
Kim
,
A.
Dixit
,
H.
Kim
,
T.
Gould
,
D.
Rocca
, and
S.
Lebegue
,
J. Chem. Phys.
148
,
064112
(
2018
).
77.
M.
Fritz
,
M.
Fernandez-Serra
, and
J. M.
Soler
,
J. Chem. Phys.
144
,
224101
(
2016
).
78.
B.
Borca
,
V.
Schendel
,
R.
Petuya
,
I.
Pentegov
,
T.
Michnowicz
,
U.
Kraft
,
H.
Klauk
,
A.
Arnau
,
P.
Wahl
,
U.
Schlickum
, and
K.
Kern
,
ACS Nano
9
,
12506
(
2015
).
79.
M.
Wang
,
J.-Q.
Zhong
,
J.
Kestell
,
I.
Waluyo
,
D. J.
Stacchiola
,
A. J.
Boscoboinik
, and
D.
Lu
,
Top. Catal.
60
,
481
(
2017
).
80.
P.
Nozières
and
D.
Pines
,
Phys. Rev.
111
,
442
(
1958
).
81.
L.
Hedin
and
B. I.
Lundqvist
,
J. Phys. C
4
,
2064
(
1971
).
82.
K.
Burke
,
J. Chem. Phys.
136
,
150901
(
2012
).
83.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A. D.
Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
,
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
84.
P.
Giannozzi
,
O.
Andreussi
,
T.
Brumme
,
O.
Bunau
,
M.
Buongiorno Nardelli
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
M.
Cococcioni
,
N.
Collonna
,
I.
Carnimeo
,
A.
Dal Corso
,
S.
de Gironcoli
,
P.
Delugas
,
R. A.
DiStasio
, Jr.
,
A.
Feretti
,
A.
Floris
,
G.
Fratesi
,
G.
Fugalio
,
R.
Gebauer
,
U.
Gerstmann
,
F.
Giustino
,
T.
Gorni
,
J.
Jia
,
M.
Kawamura
,
H.-Y.
Ko
,
A.
Kokalj
,
E.
Kücükbenli
,
M.
Lazzeri
,
M.
Marseli
,
N.
Marzari
,
F.
Mauri
,
H.-V.
Nguyen
,
A.
Otero-de-la Roza
,
L.
Paulatto
,
S.
Poncé
,
D.
Rocca
,
R.
Sabatini
,
B.
Santra
,
M.
Schlipf
,
A.
Seitsonen
,
A.
Smogunov
,
I.
Timrov
,
T.
Thonhauser
,
P.
Umari
,
N.
Vast
,
X.
Wu
, and
S.
Baroni
,
J. Phys.: Condens. Matter
29
,
465901
(
2017
).
85.
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
86.
X.
Gonze
,
M.
Rignanese
,
M.
Verstraete
,
J. M.
Beuken
,
Y.
Pouillon
,
R.
Caracas
,
F.
Jollet
,
M.
Torrent
,
G.
Zerah
,
M.
Mikami
,
P.
Ghosez
,
M.
Veithen
,
J. Y.
Raty
,
V.
Olevanov
,
F.
Bruneval
,
L.
Reining
,
R.
Godby
,
G.
Onida
,
D. R.
Hamann
, and
D. C.
Allen
,
Z. Kristall
220
,
558
(
2005
).
87.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
88.
A. D.
Becke
and
E. R.
Johnson
,
J. Chem. Phys.
127
,
154108
(
2007
).
89.
A. O.
de-la Roza
and
E. R.
Johnson
,
J. Chem. Phys.
136
,
174109
(
2012
).
90.
D. R.
Hamann
,
Phys. Rev. B
88
,
085117
(
2013
).
91.
L.
Lin
,
J. Chem. Theory Comput.
12
,
2242
(
2016
).
92.
P.
Jurecka
,
J.
Sponer
,
J.
Cerny
, and
P.
Hobza
,
Phys. Chem. Chem. Phys.
8
,
1985
(
2006
).
93.
M. S.
Marshall
,
L. A.
Burns
, and
C. D.
Sherrill
,
J. Chem. Phys.
135
,
194102
(
2011
).
94.
Fock-exchange mixing values a = 1/m for m > 6 is not considered relevant.12 
95.
L.
Goerigk
and
S.
Grimme
,
J. Chem. Theory Comput.
6
,
107
(
2010
).
96.
J.
Sun
,
A.
Ruzsinszky
, and
J. P.
Perdew
,
Phys. Rev. Lett.
115
,
036402
(
2015
).
97.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
98.
A.
Tkatchenko
and
M.
Scheffler
,
Phys. Rev. Lett.
102
,
073005
(
2009
).
99.
T.
Takatani
,
E. G.
Hohenstein
,
M.
Malagoli
,
M. S.
Marshall
, and
C. D.
Sherrill
,
J. Chem. Phys.
132
,
144104
(
2010
).
100.
A.
Tkatchenko
,
R. A.
DiStasio
,
R.
Car
, and
M.
Scheffler
,
Phys. Rev. Lett.
108
,
236402
(
2012
).
101.
S.
Refaely-Abramson
,
M.
Jain
,
S.
Sharifzadeh
,
J. B.
Neaton
, and
L.
Kronik
,
Phys. Rev. B
92
,
081204
(
2015
).
102.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
8207
(
2003
).
103.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
124
,
219906
(
2006
).

Supplementary Material

You do not currently have access to this content.