We present an efficient general method to simulate in the Stokesian limit the coupled translational and rotational dynamics of arbitrarily shaped colloids subject to external potential forces and torques, linear flow fields, and Brownian motion. The colloid’s surface is represented by a collection of spherical primary particles. The hydrodynamic interactions between these particles, here approximated at the Rotne-Prager-Yamakawa level, are evaluated only once to generate the body’s (11 × 11) grand mobility matrix. The constancy of this matrix in the body frame, combined with the convenient properties of quaternions in rotational Brownian Dynamics, enables an efficient simulation of the body’s motion. Simulations in quiescent fluids yield correct translational and rotational diffusion behaviour and sample Boltzmann’s equilibrium distribution. Simulations of ellipsoids and spherical caps under shear, in the absence of thermal fluctuations, yield periodic orbits in excellent agreement with the theories by Jeffery and Dorrepaal. The time-varying stress tensors provide the Einstein coefficient and viscosity of dilute suspensions of these bodies.

1.
G. G.
Stokes
,
Trans. Cambridge Philos. Soc.
9
,
8
(
1851
).
2.
A.
Einstein
,
Ann. Phys.
324
,
289
(
1906
).
3.
G. B.
Jeffery
,
Proc. R. Soc. A
102
,
161
(
1922
).
4.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
, Cambridge Mathematical Library (
Cambridge University Press
,
Cambridge, UK
,
2000
).
5.
S.
Kim
and
S. J.
Karrila
,
Microhydrodynamics: Principles and Selected Applications
, Butterworth-Heinemann Series in Chemical Engineering (
Butterworth-Heinemann
,
Stoneham, MA, USA
,
1991
).
6.
E.
Guazzelli
and
J. F.
Morris
,
A Physical Introduction to Suspension Dynamics
, Cambridge Texts in Applied Mathematics (
Cambridge University Press
,
Cambridge, UK
,
2012
).
7.
H.
Huang
,
X.
Yang
,
M.
Krafczyk
, and
X.-Y.
Lu
,
J. Fluid Mech.
692
,
369
(
2012
).
8.
J.
Einarsson
,
F.
Candelier
,
F.
Lundell
,
J.
Angilella
, and
B.
Mehlig
,
Phys. Fluids
27
,
063301
(
2015
).
9.
C. W.
Oseen
,
Neuere Methoden und Ergebnisse in der Hydrodynamik
(
Akad. Verl.-Ges.
,
Leipzig, Germany
,
1927
).
10.
J. M.
Burgers
, “
On the motion of small particles of elongated form suspended in a viscous liquid
,” in
Second Report on Viscosity and Plasticity
(
Noord-Hollandsche Uitgeversmaatschappij
,
Amsterdam, The Netherlands
,
1938
), Chap. III;
Reprinted in:
F. T.
Nieuwstadt
and
J. A.
Steketee
,
Selected Papers of J. M. Burgers
(
Springer
,
Dordrecht, The Netherlands
,
1995
).
11.
J.
Riseman
and
J. G.
Kirkwood
,
J. Chem. Phys.
18
,
512
(
1950
).
12.
V.
Bloomfield
,
W.
Dalton
, and
K.
van Holde
,
Biopolymers
5
,
135
(
1967
).
13.
J.
García de la Torre
and
V.
Bloomfield
,
Biopolymers
16
,
1747
(
1977
).
14.
J.
García de la Torre
and
V.
Bloomfield
,
Biopolymers
16
,
1765
(
1977
).
15.
R. F.
Goldstein
,
J. Chem. Phys.
83
,
2390
(
1985
).
16.
J.
Rotne
and
S.
Prager
,
J. Chem. Phys.
50
,
4831
(
1969
).
17.
H.
Yamakawa
,
J. Chem. Phys.
53
,
436
(
1970
).
18.
R.
Kutteh
,
J. Chem. Phys.
132
,
174107
(
2010
).
19.
J.
Wang
,
E. J.
Tozzi
,
M. D.
Graham
, and
D. J.
Klingenberg
,
Phys. Fluids
24
,
123304
(
2012
).
20.
B.
Carrasco
and
J.
García de la Torre
,
J. Chem. Phys.
111
,
4817
(
1999
).
21.
J.
García de la Torre
,
G.
del Rio Echenique
, and
A.
Ortega
,
J. Phys. Chem. B
111
,
955
(
2007
).
22.
J.
García de la Torre
and
B.
Carrasco
,
Euro. Biophys. J.
27
,
549
(
1998
).
23.
J.
García de la Torre
,
D.
Amorós
, and
A.
Ortega
,
Euro. Biophys. J.
39
,
381
(
2010
).
24.
L.
Durlofsky
,
J. F.
Brady
, and
G.
Bossis
,
J. Fluid Mech.
180
,
21
(
1987
).
25.
J. F.
Brady
and
G.
Bossis
,
Ann. Rev. Fluid Mech.
20
,
111
(
1988
).
26.
W. A.
Wegener
,
Biopolymers
23
,
2243
(
1984
).
27.
J. W.
Swan
,
J. F.
Brady
,
R. S.
Moore
, and
ChE 174
,
Phys. Fluids
23
,
071901
(
2011
).
28.
Y. M.
Harshe
,
L.
Ehrl
, and
M.
Lattuada
,
J. Colloid Interface Sci.
352
,
87
(
2010
).
29.
M.
Makino
and
M.
Doi
,
J. Phys. Soc. Jpn.
73
,
2739
(
2004
).
30.
S.
Aragon
,
Methods
54
,
101
(
2011
).
31.
E.
Dickinson
,
Chem. Soc. Rev.
14
,
421
(
1985
).
32.
Y. M.
Harshe
and
M.
Lattuada
,
J. Colloid Interface Sci.
367
,
83
(
2012
).
33.
H.
Goldstein
,
Classical Mechanics
, 2nd ed. (
Addison-Wesley
,
Reading, MA, USA
,
1980
).
34.
N. G.
van Kampen
,
Stochastic Processes in Physics and Chemistry
(
Elsevier
,
Amsterdam, The Netherlands
,
1992
), revised and enlarged edition.
35.
H. C.
Öttinger
,
Stochastic Processes in Polymeric Fluids
(
Springer-Verlag
,
Berlin, Germany
,
1996
).
36.
C.
Gardiner
,
Stochastic Methods. A Handbook for the Natural and Social Sciences
, Springer Series in Synergetics, 4th ed. (
Springer-Verlag
,
Berlin, Germany
,
2009
).
37.
S. N.
Naess
and
A.
Elgsaeter
,
Macromol. Theory Simul.
13
,
419
(
2004
).
38.
T. R.
Evensen
,
A.
Elgsaeter
, and
S. N.
Naess
,
Colloids Surf., B
56
,
80
(
2007
).
39.
T. R.
Evensen
,
S. N.
Naess
, and
A.
Elgsaeter
,
Macromol. Theory Simul.
17
,
121
(
2008
).
40.
T. R.
Evensen
,
S. N.
Naess
, and
A.
Elgsaeter
,
Macromol. Theory Simul.
17
,
403
(
2008
).
41.
T. R.
Evensen
,
S. N.
Naess
, and
A.
Elgsaeter
,
Macromol. Theory Simul.
18
,
50
(
2009
).
42.
I. M.
Ilie
,
W. J.
Briels
, and
W. K.
den Otter
,
J. Chem. Phys.
142
,
114103
(
2015
).
43.
J. M.
Dorrepaal
,
J. Fluid Mech.
84
,
265
(
1978
).
44.
L. D.
Favro
,
Phys. Rev.
119
,
53
(
1960
).
45.
P.-O.
Persson
and
G.
Strang
,
SIAM Rev.
46
,
329
(
2004
).
46.
MATLAB R2014a,
The MathWorks, Inc.
,
Natick, MA, USA
,
2014
.
47.
R. W.
Wilson
and
V. A.
Bloomfield
,
Biopolymers
18
,
1205
(
1979
).
48.
L. G.
Leal
and
E. J.
Hinch
,
J. Fluid Mech.
46
,
685
(
1971
).
49.
S.
Mueller
,
E. W.
Llewellin
, and
H. M.
Mader
,
Proc. R. Soc. A
466
,
1201
(
2010
).
50.
A.
Nir
and
A.
Acrivos
,
J. Fluid Mech.
59
,
209
(
1973
).
51.
E. J.
Hinch
and
L. G.
Leal
,
J. Fluid Mech.
52
,
683
(
1972
).
52.
D. J.
Jeffrey
and
Y.
Onishi
,
J. Fluid Mech.
139
,
261
(
1984
).
53.
S.
Kim
and
R. T.
Mifflin
,
Phys. Fluids
28
,
2033
(
1985
).
54.
B.
Carrasco
and
J.
García de la Torre
,
Biophys. J.
76
,
3044
(
1999
).
You do not currently have access to this content.