We introduce a new path integral Monte Carlo method for investigating nonadiabatic systems in thermal equilibrium and demonstrate an approach to reducing stochastic error. We derive a general path integral expression for the partition function in a product basis of continuous nuclear and discrete electronic degrees of freedom without the use of any mapping schemes. We separate our Hamiltonian into a harmonic portion and a coupling portion; the partition function can then be calculated as the product of a Monte Carlo estimator (of the coupling contribution to the partition function) and a normalization factor (that is evaluated analytically). A Gaussian mixture model is used to evaluate the Monte Carlo estimator in a computationally efficient manner. Using two model systems, we demonstrate our approach to reduce the stochastic error associated with the Monte Carlo estimator. We show that the selection of the harmonic oscillators comprising the sampling distribution directly affects the efficiency of the method. Our results demonstrate that our path integral Monte Carlo method’s deviation from exact Trotter calculations is dominated by the choice of the sampling distribution. By improving the sampling distribution, we can drastically reduce the stochastic error leading to lower computational cost.

1.
I.
Bersuker
,
The Jahn-Teller Effect
(
Cambridge University Press
,
2006
).
2.
P.
Bunker
and
P.
Jensen
,
Molecular Spectroscopy and Symmetry
(
NRC Research Press
,
1998
).
3.
C. J.
Cramer
,
Essentials of Computational Chemistry: Theories and Models
(
John Wiley & Sons
,
2013
).
4.
G. A.
Worth
and
L. S.
Cederbaum
,
Annu. Rev. Phys. Chem.
55
,
127
(
2004
).
5.
D. R.
Yarkony
,
J. Chem. Phys.
100
,
18612
(
1996
).
6.
L. J.
Butler
,
Annu. Rev. Phys. Chem.
49
,
125
(
1998
).
7.
J. C.
Tully
,
J. Chem. Phys.
137
,
22A301
(
2012
).
8.
M.
Persico
and
G.
Granucci
,
Theor. Chem. Acc.
133
,
1526
(
2014
).
9.
I.
Tavernelli
,
Acc. Chem. Res.
48
,
792
(
2015
).
10.
X.-P.
Chang
,
G.
Cui
,
W.-H.
Fang
, and
W.
Thiel
,
ChemPhysChem
16
,
933
(
2015
).
11.
X.
Sun
and
W. H.
Miller
,
J. Chem. Phys.
106
,
6346
(
1997
).
12.
S.
Bonella
and
D.
Coker
,
J. Chem. Phys.
122
,
194102
(
2005
).
13.
W. H.
Miller
,
J. Phys. Chem. A
113
,
1405
(
2009
).
14.
M. S.
Church
,
T. J.
Hele
,
G. S.
Ezra
, and
N.
Ananth
,
J. Chem. Phys.
148
,
102326
(
2018
).
15.
N.
Makri
,
Int. J. Quantum Chem.
115
,
1209
(
2015
).
16.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
100
,
5093
(
1994
).
17.
J.-L.
Liao
and
G. A.
Voth
,
J. Phys. Chem. B
106
,
8449
(
2002
).
18.
I. R.
Craig
and
D. E.
Manolopoulos
,
J. Chem. Phys.
121
,
3368
(
2004
).
19.
S. N.
Chowdhury
and
P.
Huo
,
J. Chem. Phys.
147
,
214109
(
2017
).
20.
J.
Duke
and
N.
Ananth
,
Faraday Discuss.
195
,
253
(
2016
).
21.
A. R.
Menzeleev
,
F.
Bell
, and
T. F.
Miller
 III
,
J. Chem. Phys.
140
,
064103
(
2014
).
22.
N.
Ananth
,
J. Chem. Phys.
139
,
124102
(
2013
).
23.
H.-D.
Meyera
and
W. H.
Miller
,
J. Chem. Phys.
70
,
3214
(
1979
).
24.
G.
Stock
and
M.
Thoss
,
Phys. Rev. Lett.
78
,
578
(
1997
).
25.
U.
Müller
and
G.
Stock
,
J. Chem. Phys.
111
,
77
(
1999
).
26.
J. O.
Richardson
and
M.
Thoss
,
J. Chem. Phys.
139
,
031102
(
2013
).
27.
M.
Born
and
K.
Huang
,
Dynamical Theory of Crystal Lattices
(
Clarendon Press
,
1954
).
28.
C. A.
Mead
and
D. G.
Truhlar
,
J. Chem. Phys.
77
,
6090
(
1982
).
29.
H.
Köppel
,
L.
Cederbaum
, and
W.
Domcke
,
Chem. Phys. Lett.
110
,
469
(
1984
).
30.
T.
Pacher
,
L. S.
Cederbaum
, and
H.
Köppel
,
J. Chem. Phys.
89
,
7367
(
1988
).
31.
T.
Pacher
,
L. S.
Cederbaum
, and
H.
Köppel
,
Adv. Chem. Phys.
84
,
293
(
1993
).
32.
H.
Köppel
, in
Conical Intersections: Electronic Structure, Dynamics & Spectroscopy
, edited by
W.
Domcke
,
D.
Yarkony
, and
H.
Köppel
(
World Scientific
,
2004
), pp.
175
205
.
33.
M.
Baer
,
Beyond Born-Oppenheimer: Electronic Nonadiabatic Coupling Terms and Conical Intersections
(
John Wiley & Sons
,
2006
).
34.
L.
Cederbaum
,
W.
Domcke
,
H.
Köppel
, and
W. V.
Niessen
,
Chem. Phys.
26
,
169
(
1977
).
35.
C.
Woywod
,
W.
Domcke
,
A. L.
Sobolewski
, and
H.
Werner
,
J. Chem. Phys.
100
,
1400
(
1994
).
36.
A.
Raab
,
G. A.
Worth
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
110
,
936
(
1999
).
37.
A.
Lami
,
C.
Petrongolo
, and
F.
Santoro
, in
Conical Intersections: Electronic Structure, Dynamics & Spectroscopy
, edited by
W.
Domcke
,
D.
Yarkony
, and
H.
Köppel
(
World Scientific
,
2004
), pp.
699
739
.
38.
W.
Domcke
and
D. R.
Yarkony
,
Annu. Rev. Phys. Chem.
63
,
325
(
2012
).
39.
J. R.
Reimers
,
L. K.
McKemmish
,
R. H.
McKenzie
, and
N. S.
Hush
,
Phys. Chem. Chem. Phys.
17
,
24641
(
2015
).
40.
J. R.
Duke
and
N.
Ananth
, preprint arXiv:1606.01394 (
2016
).
41.
S.
Jang
and
J.
Cao
,
J. Chem. Phys.
114
,
9959
(
2001
).
42.
J.
Cao
,
C.
Minichino
, and
G. A.
Voth
,
J. Chem. Phys.
103
,
1391
(
1995
).
43.
M.
Topaler
and
N.
Makri
,
Chem. Phys. Lett.
210
,
285
(
1993
).
44.
45.
N.
Makri
,
J. Math. Phys.
36
,
2430
(
1995
).
46.
H.
Kono
,
A.
Takasaka
, and
S.
Lin
,
J. Chem. Phys.
88
,
6390
(
1988
).
47.
D.
Yu
and
L.
Deng
,
Automatic Speech Recognition: A Deep Learning Approach
(
Springer
,
2014
).
48.
D. H. H.
Santosh
,
P.
Venkatesh
,
P.
Poornesh
,
L. N.
Rao
, and
N. A.
Kumar
,
Int. J. Soft Comput. Eng.
3
,
114
(
2013
).
49.
K. E.
Schmidt
and
M. A.
Lee
,
Phys. Rev. E
51
,
5495
(
1995
).
50.

Note that gR may take on negative values for certain choices of V^ and therefore g would be a quasiprobability distribution.

51.
M.
Tuckerman
,
Statistical Mechanics: Theory and Molecular Simulation
, Oxford Graduate Texts (
OUP Oxford
,
2010
).
52.
S.
Frühwirth-Schnatter
,
Finite Mixture and Markov Switching Models
(
Springer New York
,
2006
).
53.
F.
Barone
,
H.
Boschi-Filho
, and
C.
Farina
,
Am. J. Phys.
71
,
483
(
2003
).
54.
D. A.
Reynolds
, “
Gaussian mixture models
,” in
Encyclopedia of Biometrics
(
Springer
,
2015
), pp.
827
832
.
55.
S.
Sardashti
,
A.
Arelakis
,
P.
Stenström
, and
D. A.
Wood
, in
A Primer on Compression in the Memory Hierarchy
(
Morgan & Claypool Publishers
,
2015
), Chap. 2.
56.
A. J.
Smith
,
ACM Comput. Surv.
14
,
473
(
1982
).
57.
P. J.
Denning
, “
On modeling program behavior
,” in
Proceedings of the May 16-18, 1972, Spring Joint Computer Conference
(
ACM
,
1972
), pp.
937
944
.
58.
D.
Thirumalai
,
E. J.
Bruskin
, and
B. J.
Berne
,
J. Chem. Phys.
79
,
5063
(
1983
).
59.
N.
Raymond
, Pibronic, https://github.com/ngraymon/Pibronic,
2018
.
60.
D.
Iouchtchenko
, VibronicToolkit, https://github.com/0/VibronicToolkit.jl,
2018
.
61.
K. I.
Kugel’
and
D.
KhomskiĬ
,
Phys.-Usp.
25
,
231
(
1982
).
62.
E.
Haselbach
,
Chem. Phys. Lett.
7
,
428
(
1970
).
63.
F.
Pernkopf
and
D.
Bouchaffra
,
IEEE Trans. Pattern Anal. Mach. Intell.
27
,
1344
(
2005
).
64.
C.
Constantinopoulos
,
M. K.
Titsias
, and
A.
Likas
,
IEEE Trans. Pattern Anal. Mach. Intell.
28
,
1013
(
2006
).
65.
K.
Lee
,
L.
Guillemot
,
Y.
Yue
,
M.
Kramer
, and
D.
Champion
,
Mon. Not. R. Astron. Soc.
424
,
2832
(
2012
).
66.
J.
Anderson
,
M.
Belkin
,
N.
Goyal
,
L.
Rademacher
, and
J.
Voss
, “
Proceedings of The 27th Conference on Learning Theory
,” in
Proceedings of Machine Learning Research
(PMLR,
2014
), Vol. 35, pp.
1135
1164
.
You do not currently have access to this content.