Intermolecular interaction of XH2P···MY (X = H, CH3, F, CN, NO2; M = Cu, Ag, Au; Y = F, Cl, Br, I) complexes was investigated by means of an ab initio method. The molecular interaction energies are in the order Ag < Cu < Au and increased with the decrease of RP···M. Interaction energies are strengthened when electron-donating substituents X connected to XH2P, while electron-withdrawing substituents produce the opposite effect. The strongest P···M bond was found in CH3H2P···AuF with −70.95 kcal/mol, while the weakest one was found in NO2H2P···AgI with −20.45 kcal/mol. The three-center/four-electron (3c/4e) resonance-type of P:-M-:Y hyperbond was recognized by the natural resonance theory and the natural bond orbital analysis. The competition of P:M–Y ↔ P–M:Y resonance structures mainly arises from hyperconjugation interactions; the bond order of bP–M and bM–Y is in line with the conservation of the idealized relationship bP–M + bM–Y ≈ 1. In all MF-containing complexes, P–M:F resonance accounted for a larger proportion which leads to the covalent characters for partial ionicity of MF. The interaction energies of these Cu/Ag/Au complexes are basically above the characteristic values of the halogen-bond complexes and close to the observed strong hydrogen bonds in ionic hydrogen-bonded species.

1.
J. E. D.
Bene
,
I.
Alkorta
, and
J.
Elguero
, “
The pnicogen bond in review: Structures, binding energies,bonding properties, and spin-spin coupling constants of complexes stabilized by pnicogen bonds
,” in
Noncovalent Forces
, edited by
S.
Scheiner
(
Springer
,
Berlin
,
2015
), Vol. 19, pp.
191
263
.
2.
S.
Scheiner
, “
The pnicogen bond: Its relation to hydrogen, halogen, and other noncovalent bonds
,”
Acc. Chem. Res.
46
,
280
288
(
2012
).
3.
A.
Priimagi
,
G.
Cavallo
,
P.
Metrangolo
, and
G.
Resnati
, “
The halogen bond in the design of functional supramolecular materials: Recent advances
,”
Chem. Res.
46
,
2686
2695
(
2013
).
4.
M. R.
Sundberg
,
R.
Uggla
,
C.
Viñas
,
F.
Teixidor
,
S.
Paavola
, and
R.
Kivekäs
, “
Nature of intramolecular interactions in hypercoordinate C-substituted 1,2-dicarba-closo-dodecaboranes with short P⋯P distances
,”
Inorg. Chem.Commun.
10
,
713
716
(
2007
).
5.
M.
Liu
,
Q.
Li
, and
S.
Scheiner
, “
Comparison of tetrel bonds in neutral and protonated complexes of pyridineTF3 and furanTF3 (T = C, Si, and Ge) with NH3
Phys. Chem. Chem. Phys.
19
,
5550
5559
(
2017
).
6.
R. A.
Shaw
,
J. G.
Hill
, and
A. C.
Legon
, “
Halogen bonding with phosphine: Evidence for mulliken inner complexes and the importance of relaxation energy
,”
J. Phys. Chem. A
120
,
8461
8468
(
2016
).
7.
S. G.
Francis
,
S. L.
Matthews
,
O. K.
Poleshchuk
,
N. R.
Walker
, and
A. C.
Legon
, “
N2–Cu–F: A complex of dinitrogen and cuprous fluoride characterized by rotational spectroscopy
,”
Angew. Chem., Int. Ed.
45
,
6341
6343
(
2006
).
8.
V. A.
Mikhailov
,
F. J.
Roberts
,
S. L.
Stephens
,
S. J.
Harris
,
D. P.
Tew
,
J. N.
Harvey
,
N. R.
Walker
, and
A. C.
Legon
, “
Monohydrates of cuprous chloride and argentous chloride: H2O⋯CuCl and H2O⋯AgCl characterized by rotational spectroscopy and ab initio calculations
,”
J. Chem. Phys.
134
,
134305
(
2011
).
9.
S. Z.
Riaz
,
S. L.
Stephens
,
W.
Mizukami
,
D. P.
Tew
,
N. R.
Walker
, and
A. C.
Legon
, “
H2S···Ag–I synthesized by a laser-ablation method and identified by its rotational spectrum
,”
Chem. Phys. Lett.
531
,
1
5
(
2012
).
10.
N. R.
Walker
,
D. P.
Tew
,
S. J.
Harris
,
D. E.
Wheatley
, and
A. C.
Legon
, “
Characterisation of H2S⋯CuCl and H2S⋯AgCl isolated in the gas phase: A rigidly pyramidal geometry at sulphur revealed by rotational spectroscopy and ab initio calculations
,”
J. Chem. Phys.
135
,
014307
(
2011
).
11.
S. L.
Stephens
,
W.
Mizukami
,
D. P.
Tew
,
N. R.
Walker
, and
A. C.
Legon
, “
Distortion of ethyne on formation of a π complex with silver chloride: C2H2⋯Ag—Cl characterised by rotational spectroscopy and ab initio calculations
,”
J. Chem. Phys.
137
,
174302
(
2012
).
12.
S. L.
Stephens
,
D. M.
Bittner
,
V. A.
Mikhailov
,
W.
Mizukami
,
D. P.
Tew
,
N. R.
Walker
, and
A. C.
Legon
, “
Changes in the geometries of C2H2 and C2H4 on coordination to CuCl revealed by broadband rotational spectroscopy and ab-initio calculations
,”
Inorg. Chem.
53
,
10722
10730
(
2014
).
13.
Y. X.
Wei
,
H. B.
Li
,
J. B.
Cheng
,
W. Z.
Li
, and
Q. Z.
Li
, “
Prominent enhancing effects of substituents on the strength of π⋯σ-hole tetrel bond
,”
Int. J. Quantum Chem.
117
,
e25448
(
2017
).
14.
A.
Ozkanlar
, “
Structural properties of hydrogen-bond network in liquid formamide-water mixtures
,”
Fluid Phase Equilib.
456
,
98
108
(
2018
).
15.
B.
Dereka
and
E.
Vauthey
, “
Direct local solvent probing by transient infrared spectroscopy reveals the mechanism of hydrogen-bond induced nonradiative deactivation
,”
Chem. Sci.
8
,
5057
5066
(
2017
).
16.
M. S.
Taylor
and
E. N.
Jacobsen
, “
Asymmetric catalysis by chiral hydrogen-bond donors
,”
Angew. Chem., Int. Ed.
45
,
1520
1543
(
2006
).
17.
I.
Alkorta
,
G.
Sanchez-Sanz
, and
J.
Elguero
, “
FCl:PCX complexes: Old and new types of halogen bonds
,”
J. Phys. Chem. A
116
,
2300
2308
(
2012
).
18.
Z. X.
Wang
,
B. S.
Zheng
,
X. Y.
Yu
,
X. F.
Li
, and
P. G.
Yi
, “
Structure, properties, and nature of the pyridine-XY (X, Y = F, Cl, Br) complexes: An ab initio study
,”
J. Chem. Phys.
132
,
164104
164108
(
2010
).
19.
Z. X.
Wang
,
B. S.
Zheng
,
X. Y.
Yu
, and
P. G.
Yi
, “
Characteristics and nature of the intermolecular interactions between thiophene and XY (X, Y = F, Cl, Br): A theoretical study
,”
J. Mol. Struct.: THEOCHEM
857
,
13
19
(
2008
).
20.
Z. X.
Wang
,
B. S.
Zheng
,
P. G.
Yi
,
J. C.
Zhang
, and
W. L.
Cao
, “
Theoretical investigation on intermolecular interactions between HCCF and HCCR(R = F, Cl, Br)
,”
Chem. Res. Chin. Univ.
25
,
929
935
(
2009
).
21.
A.
Avramopoulos
,
M. G.
Papadopoulos
, and
A. J.
Sadlej
, “
Strong interactions through the X⋯Au–Y bridge: The Au bond?
,”
Chem. Phys. Lett.
370
,
765
769
(
2003
).
22.
G.
Zhang
,
H.
Yue
,
F.
Weinhold
,
H.
Wang
,
H.
Li
, and
D.
Chen
, “
Resonance character of copper/silver/gold bonding in small molecule⋯MX (X = F, Cl, Br, CH3, CF3) complexes
,”
Chem. Phys. Chem.
16
,
2424
2431
(
2015
).
23.
Y. C.
Jiao
,
C. Z.
Cao
, and
X. L.
Zhao
, “
Crystal structures and fungicidal activities of anti-2,4-bis(X-phenyl)pentane-2,4-diols
,”
J. Mol. Struct.
1027
,
57
63
(
2012
).
24.
Y. C.
Jiao
,
C. Z.
Cao
, and
Z. C.
Zhou
, “
Direct synthesis of anti-1,3-diols through nonclassical reaction of aryl grignard reagents with isopropenyl acetate
,”
Org. Lett.
13
,
180
183
(
2011
).
25.
Z. X.
Wang
,
Z. J.
Liu
,
X. L.
Ding
,
X. Y.
Yu
,
B.
Hou
, and
P. G.
Yi
, “
Comparisons of the halogen-bonded and hydrogen-bonded complexes of furan, thiophene and pyridine with Lewis acids (ClF, HCl)
,”
Comput. Theor. Chem.
981
,
1
6
(
2012
).
26.
G.
Zhang
,
X.
Zhao
, and
D.
Chen
, “
Dual bonding between H2O/H2S and AgCl/CuCl: Cu/Ag bond, sister bond to Au bond
,”
J. Phys. Chem. A
117
,
10944
10950
(
2013
).
27.
F.
Weinhold
and
R. A.
Klein
, “
What is a hydrogen bond? Mutually consistent theoretical and experimental criteria for characterizing H-bonding interactions
,”
Mol. Phys.
110
,
565
579
(
2012
).
28.
F.
Weinhold
and
R. A.
Klein
, “
What is a hydrogen bond? Resonance covalency in the supramolecular domain
,”
Chem. Educ. Res. Pract.
15
,
276
285
(
2014
).
29.
C. R.
Landis
and
F.
Weinhold
, “
3c/4e σ-type long-bonding: A novel transitional motif toward the metallic delocalization limit
,”
Inorg. Chem.
52
,
5154
5166
(
2013
).
30.
J. J.
Wilke
and
F.
Weinhold
, “
Resonance bonding patterns of peroxide chemistry: Cyclic three-center hyperbonding in “phosphadioxirane” intermediates
,”
J. Am. Chem. Soc.
128
,
11850
11859
(
2006
).
31.
G. Q.
Zhang
,
L.
Fu
,
H.
Li
,
X. C.
Fan
, and
D. Z.
Chen
, “
Insight into the bonding mechanism and the bonding covalency in noble gas-noble metal halides: An NBO/NRT investigation
,”
J. Phys. Chem. A
121
,
5183
5189
(
2017
).
32.
G. Q.
Zhang
,
H.
Li
,
F.
Weinhold
, and
D. Z.
Chen
, “
3c/4e σ^-type long-bonding competes with ω-bonding in noble-gas hydrides HNgY (Ng = He, Ne, Ar, Kr, Xe, Rn; Y = F, Cl, Br, I): A NBO/NRT perspective
,”
Phys. Chem. Chem. Phys.
18
,
8015
8026
(
2016
).
33.
S.
Martínez-Salvador
,
P.
Forniés
,
A.
Martín
, and
B.
Menjón
,
[Au(CF3)(CO)]: A gold carbonyl compound stabilized by a trifluoromethyl group
,”
Angew. Chem., Int. Ed.
50
,
6571
6574
(
2011
).
34.
Q. Z.
Li
,
R.
Li
,
X. F.
Liu
,
W. Z.
Li
, and
J. B.
Cheng
, “
Pnicogen–hydride interaction between FH2X (X = P and As) and HM (M = ZnH, BeH, MgH, Li, and Na)
,”
J. Phys. Chem. A
116
,
2547
2553
(
2012
).
35.
E.
Parvini
,
M.
Vatanparast
,
E.
Vessally
, and
A.
Bahadori
, “
Is there theoretical evidence for mutual influence between halogen and pnicogen-hydride bonds? An ab initio study
,”
J. Chem. Sci.
128
,
1
8
(
2016
).
36.
F. Y.
Ma
and
A. Y.
Li
, “
A computational study of pnicogen−hydride interaction in complexes XH2P⋯HBeY
,”
Comput. Theor. Chem.
1045
,
78
85
(
2014
).
37.
Y. C.
Jiao
,
Y.
Liu
,
W. J.
Zhao
,
Z. X.
Wang
,
X. L.
Ding
, and
T.
Lu
, “
Theoretical study on the interactions of halogen-bonds and pnicogen-bonds in phosphine derivatives with Br2, BrCl, and BrF
,”
Int. J. Quantum Chem.
117
,
e25443
(
2017
).
38.
C. Z.
Cao
,
Y.
Zhu
, and
G. F.
Chen
, “
Effect of substituents and conjugated chain length on the UV spectra of α,ω-di-substituted phenyl polyenes
,”
J. Phys. Org. Chem.
26
,
834
839
(
2013
).
39.
C. Z.
Cao
,
G. F.
Chen
, and
Y. X.
Wu
, “
Effects of substituent and solvent on the UV absorption energy of 4,4′-disubstituted stilbenes
,”
Sci. China: Chem.
54
,
1735
1744
(
2011
).
40.
E. D.
Glendening
,
C. R.
Landis
, and
F.
Weinhold
, “
NBO 6.0: Natural bond orbital analysis program
,”
J. Comput. Chem.
34
,
1429
1437
(
2013
).
41.
E. D.
Glendening
and
F.
Weinhold
, “
Natural resonance theory: I. General formalism
,”
J. Comput. Chem.
19
,
593
609
(
1998
).
42.
E. D.
Glendening
,
J. K.
Badenhoop
, and
F.
Weinhold
, “
Natural resonance theory: III. Chemical applications
,”
J. Comput. Chem.
19
,
628
646
(
1998
).
43.
E. D.
Glendening
,
J. K.
Badenhoop
,
A. E.
Reed
,
J. E.
Carpenter
,
J. A.
Bohmann
,
C. M.
Morales
,
C. R.
Landis
, and
F.
Weinhold
,
NBO 6.0. Theoretical Chemistry Institute
(
University of Wisconsin
,
Madison, WI
,
2013
), http://nbo6.chem.wisc.edu.
44.
R. F. W.
Bader
, “
A quantum theory of molecular structure and its applications
,”
Chem. Rev.
91
,
893
928
(
1991
).
45.
M. D.
Esrafili
and
F.
Mohammadian-Sabet
, “
An ab initio study on anionic aerogen bonds
Chem. Phy. Lett.
667
,
337
344
(
2017
).
46.
M. D.
Esrafili
and
F.
Mohammadian-Sabet
, “
Theoretical insights into nature of π-hole interactions between triel centers (B and Al) and radical methyl as a potential electron donor: Do single-electron triel bonds exist
,”
Struct. Chem.
27
,
1157
1164
(
2016
).
47.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
Visual molecular dynamics
,”
J. Mol. Graph.
14
,
33
38
(
1996
).
48.
T.
Lu
and
F. W.
Chen
, “
Multiwfn: A multifunctional wavefunction analyzer
,”
J. Comput. Chem.
33
,
580
592
(
2012
).
49.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A. S.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. T. N.
Staroverov
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S. U.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V. V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
W. R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
Ö.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
, gaussian 09, Revision B.01,
Gaussian, Inc.
,
Wallingford CT
,
2009
.
50.
S. L.
Stephens
,
D. P.
Tew
,
N. R.
Walker
, and
A. C.
Legon
, “
H3P⋯AgI: Generation by laser-ablation and characterization by rotational spectroscopy and ab initio calculations
,”
Phys. Chem. Chem. Phys.
18
,
18971
18977
(
2016
).
51.
B. W.
Hopkins
and
G. S.
Tschumper
, “
Integrated quantum mechanical approaches for extended π systems: Multicentered QM/QM studies of the cyanogen and diacetylene trimers
,”
Chem. Phy. Lett.
407
,
362
367
(
2005
).
52.
J. E. D.
Bene
,
I.
Alkorta
, and
J.
Elguero
, “
Influence of substituent effects on the formation of P⋯Cl pnicogen bonds or halogen bonds
,”
J. Phys. Chem. A
118
,
2360
2366
(
2014
).
53.
F.
Weinhold
, “
Natural bond orbital analysis: A critical overview of relationships to alternative bonding perspectives
,”
J. Comput. Chem.
33
,
2363
2379
(
2012
).
54.
A.
Shahi
and
E.
Arunan
, “
Hydrogen bonding, halogen bonding and lithium bonding: An atoms in molecules and natural bond orbital perspective towards conservation of total bond order, inter- and intra-molecular bonding
,”
Phys. Chem. Chem. Phys.
16
,
22935
22952
(
2014
).
55.
Y. X.
Wu
,
C. Z.
Cao
, and
H.
Yuan
, “
Estimation of the ionization potential for polyhalogenated hydrocarbons by weakest bound potential method
,”
J. Phys. Org. Chem.
25
,
110
117
(
2012
).
56.
S. J.
Jenkins
and
I.
Morrison
, “
The chemical character of the intermolecular bonds of seven phases of ice as revealed by ab initio calculation of electron densities
,”
Chem. Phys. Lett.
317
,
97
102
(
2000
).
57.
E.
Espinosa
,
I.
Alkorta
,
J.
Elguero
, and
E.
Molins
, “
From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X—H⋯F—Y systems
,”
J. Chem. Phys.
117
,
5529
5542
(
2002
).
58.
D.
Cremer
and
E.
Kraka
, “
Chemical bonds without bonding electron density—Does the difference electron-density analysis suffice for a description of the chemical bond
,”
Angew. Chem., Int. Ed.
23
,
627
628
(
1984
).

Supplementary Material

You do not currently have access to this content.