We report a concerted theoretical and experimental effort to determine the reorientational dynamics as well as hydrogen bond lifetimes for the doubly ionic hydrogen bond +OH⋯O in the ionic liquid (2-hydroxyethyl)trimethylammonium bis(trifluoromethylsulfonyl)imide [Ch][NTf2] by using a combination of NMR relaxation time experiments, density functional theory (DFT) calculations, and molecular dynamics (MD) simulations. Due to fast proton exchange, the determination of rotational correlation times is challenging. For molecular liquids, 17O-enhanced proton relaxation time experiments have been used to determine the rotational correlation times for the OH vectors in water or alcohols. As an alternative to those expensive isotopic substitution experiments, we employed a recently introduced approach which is providing access to the rotational dynamics from a single NMR deuteron quadrupolar relaxation time experiment. Here, the deuteron quadrupole coupling constants (DQCCs) are obtained from a relation between the DQCC and the δ1H proton chemical shifts determined from a set of DFT calculated clusters in combination with experimentally determined proton chemical shifts. The NMR-obtained rotational correlation times were compared to those obtained from MD simulations and then related to viscosities for testing the applicability of popular hydrodynamic models. In addition, hydrogen bond lifetimes were derived, using hydrogen bond population correlation functions computed from MD simulations. Here, two different time domains were observed: The short-time contributions to the hydrogen lifetimes and the reorientational correlation times have roughly the same size and are located in the picosecond range, whereas the long-time contributions decay with relaxation times in the nanosecond regime and are related to rather slow diffusion processes. The computed average hydrogen bond lifetime is dominated by the long-time process, highlighting the importance and longevity of hydrogen-bonded ion pairs in these ionic liquids.

1.
P.
Wasserscheid
and
T.
Welton
,
Ionic Liquids in Synthesis
, 2nd ed. (
Wiley-VCH
,
Weinheim
,
2008
).
2.
H.
Weingärtner
,
Angew. Chem., Int. Ed.
47
,
654
(
2008
).
3.
F.
Endres
and
S. Z.
El Abedin
,
Phys. Chem. Chem. Phys.
8
,
2101
(
2006
).
4.
N. L.
Plechkova
and
K. R.
Seddon
,
Chem. Soc. Rev.
37
,
123
(
2008
).
5.
T.
Welton
,
Chem. Rev.
99
,
2071
(
1999
).
6.
T. L.
Greaves
and
C. J.
Drummond
,
Chem. Rev.
108
,
206
(
2008
).
7.
J.
Dupont
,
J. Braz. Chem. Soc.
15
,
341
(
2004
).
8.
H. K.
Stassen
,
R.
Ludwig
,
A.
Wulf
, and
J.
Dupont
,
Chem. Eur. J.
21
,
8324
(
2015
).
9.
R.
Hayes
,
G. G.
Warr
, and
R.
Atkin
,
Chem. Rev.
115
,
6357
(
2015
).
10.
K.
Fumino
,
S.
Reimann
, and
R.
Ludwig
,
Phys. Chem. Chem. Phys.
16
,
21903
(
2014
).
11.
K.
Fumino
,
V.
Fossog
,
P.
Stange
,
D.
Paschek
,
R.
Hempelmann
, and
R.
Ludwig
,
Angew. Chem., Int. Ed.
54
,
2792
(
2015
).
12.
H.
Weingärtner
,
Curr. Opin. Colloid Interface Sci.
18
,
183
(
2013
).
13.
A.
Kaintz
,
G.
Baker
,
A.
Benesi
, and
M.
Maroncelli
,
J. Phys. Chem. B
117
,
11697
(
2013
).
14.
C. A.
Rumble
,
A.
Kaintz
,
S. K.
Yadav
,
B.
Conway
,
J. C.
Araque
,
G. A.
Baker
,
C.
Margulis
, and
M.
Maroncelli
,
J. Phys. Chem. B
120
,
9450
(
2016
).
15.
C. A.
Rumble
,
C.
Uitvlugt
,
B.
Conway
, and
M.
Maroncelli
,
J. Phys. Chem. B
121
,
5094
(
2017
).
16.
Y.
Yasaka
and
Y.
Kimura
,
J. Phys. Chem. B
119
,
15493
(
2015
).
17.
H.
Kimura
,
Y.
Yasaka
,
M.
Nakahara
, and
N.
Matubayasi
,
J. Chem. Phys.
137
,
194503
(
2012
).
18.
Y.
Nagasawa
and
H.
Miyasaka
,
Phys. Chem. Chem. Phys.
16
,
13008
(
2014
).
19.
D.
Lankhorst
,
J.
Schriever
, and
J. C.
Leyte
,
Ber. Bunsenges. Phys. Chem.
86
,
215
(
1982
).
20.
J. R. C.
van der Maarel
,
D.
Blankhorst
,
J.
De Blijser
, and
J. C.
Leyte
,
Chem. Phys. Lett.
122
,
541
(
1985
).
21.
J. R. C.
van der Maarel
,
D.
Blankhorst
,
J.
De Blijser
, and
J. C.
Leyte
,
J. Phys. Chem.
90
,
1470
(
1986
).
22.
R.
Ludwig
,
F.
Weinhold
, and
T. C.
Farrar
,
J. Chem. Phys.
103
,
6941
(
1995
).
23.
R.
Ludwig
,
Chem. Phys.
195
,
329
(
1995
).
24.
R.
Ludwig
,
D. S.
Gill
, and
M. D.
Zeidler
,
Z. Naturforsch., A: Phys. Sci.
46
,
89
(
1991
).
25.
R.
Ludwig
,
D. S.
Gill
, and
M. D.
Zeidler
,
Z. Naturforsch., A: Phys. Sci.
47
,
857
(
1992
).
26.
R.
Ludwig
and
M. D.
Zeidler
,
Z. Phys. Chem.
189
,
19
(
1995
).
27.
R.
Ludwig
and
M. D.
Zeidler
,
Mol. Phys.
82
,
313
(
1994
).
28.
M. A.
Wendt
and
T. C.
Farrar
,
Mol. Phys.
95
,
1077
(
1998
).
29.
M. A.
Wendt
,
M. D.
Zeidler
, and
T. C.
Farrar
,
Mol. Phys.
97
,
753
(
1999
).
30.
T. D.
Ferris
,
M. D.
Zeidler
, and
T. C.
Farrar
,
Mol. Phys.
98
,
737
(
2000
).
31.
M.
Strauch
,
A.-M.
Bonsa
,
B.
Golub
,
V.
Overbeck
,
D.
Michalik
,
D.
Paschek
, and
R.
Ludwig
,
Phys. Chem. Chem. Phys.
18
,
17788
(
2016
).
32.
A.
Knorr
,
K.
Fumino
,
A.-M.
Bonsa
, and
R.
Ludwig
,
Phys. Chem. Chem. Phys.
17
,
30978
(
2015
).
33.
Y.
Zhang
and
E. J.
Maginn
,
J. Phys. Chem. Lett.
6
,
700
(
2015
).
34.
C.
Ammann
,
P.
Meier
, and
A.
Merbach
,
J. Magn. Reson.
46
,
319
(
1982
).
35.
M.
Kaplan
,
F.
Bovey
, and
H.
Cheng
,
Anal. Chem.
47
,
1703
(
1975
).
36.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
O.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
, gaussian 09, Revision D.01,
Gaussian, Inc.
,
Wallingford, CT
,
2009
.
37.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
38.
S.
Ehrlich
,
J.
Moellmann
,
W.
Reckien
,
T.
Bredow
, and
S.
Grimme
,
ChemPhysChem
12
,
3414
(
2011
).
39.
S.
Grimme
,
A.
Hansen
,
J. G.
Brandenburg
, and
C.
Bannwarth
,
Chem. Rev.
116
,
5105
(
2016
).
40.
H.
Huber
,
J. Chem. Phys.
83
,
4591
(
1985
).
41.
R.
Eggenberger
,
S.
Gerber
,
H.
Huber
,
D.
Searles
, and
M.
Welker
,
J. Chem. Phys.
97
,
5898
(
1992
).
42.
D. J.
Searles
and
H.
Huber
, in
Encyclopedia of Nuclear Magnetic Resonance
, edited by
D. M.
Grant
and
R. K.
Harris
(
Wiley
,
New York
,
2002
), Vol. 9.
43.
A.
Wulf
,
R.
Ludwig
,
P.
Sasisanker
, and
H.
Weingärtner
,
Chem. Phys. Lett.
439
,
323
(
2007
).
44.
A.
Wulf
,
K.
Fumino
,
D.
Michalik
, and
R.
Ludwig
,
ChemPhysChem
8
,
2265
(
2007
).
45.
T.
Köddermann
,
D.
Paschek
, and
R.
Ludwig
,
ChemPhysChem
8
,
2464
(
2007
).
46.
S.
Aparicio
and
M.
Atilhan
,
J. Phys. Chem. C
116
,
12055
(
2012
).
47.
S.
Nosé
,
Mol. Phys.
52
,
255
(
1984
).
48.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
49.
M.
Parrinello
and
A.
Rahman
,
J. Appl. Phys.
52
,
7182
(
1981
).
50.
S.
Nosé
and
M. L.
Klein
,
Mol. Phys.
50
,
1055
(
1983
).
51.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T. A.
Darden
,
H.
Lee
, and
L. G.
Pedersen
,
J. Chem. Phys.
103
,
8577
(
1995
).
52.
B.
Hess
,
H.
Bekker
,
H. J. C.
Berendsen
, and
J. G. E. M.
Fraaije
,
J. Comput. Chem.
18
,
1463
(
1997
).
53.
E.
Lindahl
,
B.
Hess
, and
D.
van der Spoel
,
J. Mol. Model.
7
,
306
(
2001
).
54.
M.
Abraham
,
E.
Apol
,
R.
Apostolov
,
H. J.
Berendsen
,
A.
van Buuren
,
P.
Bjelkmar
,
R.
van Drunen
,
A.
Feenstra
,
S.
Fritsch
,
G.
Groenhof
,
C.
Junghans
,
J.
Hub
,
P.
Kasson
,
C.
Kutzner
,
B.
Lambeth
,
P.
Larsson
,
J. A.
Lemkul
,
E.
Marklund
,
P.
Meulenhoff
,
T.
Murtola
,
S.
Pall
,
S.
Pronk
,
R.
Schulz
,
M.
Shirts
,
A.
Sijbers
,
P.
Tieleman
,
M.
Wolf
,
B.
Hess
,
D.
van der Spoel
, and
E.
Lindahl
, GROMACS—Groningen Machine for Chemical Simulations User Manual Version 4.6.1,
2013
.
55.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
56.
A.
Knorr
and
R.
Ludwig
,
Sci. Rep.
5
,
17505
(
2015
).
57.
A.
Knorr
,
P.
Stange
,
K.
Fumino
,
F.
Weinhold
, and
R.
Ludwig
,
ChemPhysChem
17
,
458
(
2016
).
58.
A.
Strate
,
T.
Niemann
,
D.
Michalik
, and
R.
Ludwig
,
Angew. Chem., Int. Ed.
56
,
496
(
2017
).
59.
A.
Strate
,
T.
Niemann
, and
R.
Ludwig
,
Phys. Chem. Chem. Phys.
19
,
18854
(
2017
).
60.
R.
Ludwig
,
Phys. Chem. Chem. Phys.
17
,
13790
(
2015
).
61.
J.
Verhoeven
,
A.
Dymanus
, and
H.
Bluyssen
,
J. Chem. Phys.
50
,
3330
(
1969
).
62.
K. H.
Casleton
and
S. G.
Kukolich
,
Chem. Phys. Lett.
22
,
331
(
1973
).
63.
A.
Abragam
,
The Principles of Nuclear Magnetism
(
Oxford Clarendon Press
,
1961
).
64.
T. C.
Farrar
,
An Introduction to Pulse NMR Spectroscopy
(
Farragut Press
,
Chicago
,
1987
).
65.
A.
Einstein
,
Investigations on the Theory of Brownian Motion
(
Dover
,
New York
,
1956
).
66.
P.
Debye
,
Polar Molecules
(
Dover
,
New York
,
1929
).
67.
A.
Gierer
and
K.
Wirtz
,
Z. Naturforsch., A: Phys. Sci.
8
,
532
(
1953
).
68.
D.
Chandler
,
J. Chem. Phys.
68
,
2959
(
1978
).
69.
R. P. W. J.
Struis
,
J.
De Bleijser
, and
J. C.
Leyte
,
J. Phys. Chem.
91
,
1639
(
1987
).

Supplementary Material

You do not currently have access to this content.