There has been a substantial increase in enzyme applications within the biochemical and pharmaceutical industries, for example, as industrial biocatalysts. However, enzymes have narrow marginal stability which makes them prone to become inactive and/or denature with a slight change in the solvent environment. Typically industrial applications require harsher solvent environments than enzyme native environments, and hence there is a need to understand solvent-protein interactions in order to develop strategies to maintain, or enhance, the enzymatic activity under industrially relevant solvent conditions. Previously we have shown that protic ionic liquids (PILs) with water can have a stabilising effect on lysozyme, with a large variation dependent on which PIL ions are present, and the water concentration [E. C. Wijaya et al., Phys. Chem. Chem. Phys. 18(37), 25926–25936 (2016)]. Here we extend on this work using non-stoichiometric aqueous PIL solvents to investigate, and isolate, the role of pH and ionicity on enzymes. We have used the PILs ethylammonium nitrate (EAN) and ethanolammonium formate (EOAF) since our previous work has identified these as good solvents for lysozyme. Solvent libraries were made from these two PILs with an additional precursor acid or base to modify the acidity/basicity of the neutral stoichiometric PIL, and with water added, to have solutions with 4-17 mol. % of the PIL ions in water. Molar ratios of base:acid were varied between 1:1.05 and 2:1 for EAN and 1:1.25 and 2:1 for EOAF, which enabled from highly basic to highly acidic solutions to be obtained. This was to modify the acidity/basicity of the neutral stoichiometric PILs, without the addition of buffers. The structure and stability of hen egg white lysozyme (HEWL) were explored under these solvent conditions using synchrotron small angle X-ray scattering (SAXS), Fourier transform infrared (FTIR), and activity assays. The radius of gyration and Kratky plots obtained from the SAXS data showed little change with varying ionicity or acid:base ratio. FTIR showed that α-helix was maintained in all, except for the most acidic solvent conditions. The activity data show that HEWL was active between pH 0 and 11 for the EA:N-water system and pH 4.4 and 11 for the EOA:F-water system. This work indicates that ionic liquids have the potential to enable enzymes to maintain activity across a broader range of solvent conditions.

1.
P.
Attri
,
I.
Jha
,
E. H.
Choi
, and
P.
Venkatesu
, “
Variation in the structural changes of myoglobin in the presence of several protic ionic liquid
,”
Int. J. Biol. Macromol.
69
,
114
123
(
2014
).
2.
L.-P.
Dang
,
W.-Z.
Fang
,
Y.
Li
,
Q.
Wang
,
H.-Z.
Xiao
, and
Z.-Z.
Wang
, “
Ionic liquid-induced structural and activity changes in hen egg white lysozyme
,”
Appl. Biochem. Biotechnol.
169
(
1
),
290
300
(
2013
).
3.
P.
Sassi
,
G.
Onori
,
A.
Giugliarelli
,
M.
Paolantoni
,
S.
Cinelli
, and
A.
Morresi
, “
Conformational changes in the unfolding process of lysozyme in water and ethanol/water solutions
,”
J. Mol. Liq.
159
(
1
),
112
116
(
2011
).
4.
F.
van Rantwijk
and
R. A.
Sheldon
, “
Biocatalysis in ionic liquids
,”
Chem. Rev.
107
(
6
),
2757
2785
(
2007
).
5.
A.
Kumar
and
P.
Venkatesu
, “
Does the stability of proteins in ionic liquids obey the Hofmeister series?
,”
Int. J. Biol. Macromol.
63
(
0
),
244
253
(
2014
).
6.
K. D.
Collins
, “
Ions from the Hofmeister series and osmolytes: Effects on proteins in solution and in the crystallization process
,”
Methods
34
(
3
),
300
311
(
2004
).
7.
P.
Ball
and
J. E.
Hallsworth
, “
Water structure and chaotropicity: Their uses, abuses and biological implications
,”
Phys. Chem. Chem. Phys.
17
(
13
),
8297
8305
(
2015
).
8.
H.
Zhao
, “
Methods for stabilizing and activating enzymes in ionic liquids—A review
,”
J. Chem. Technol. Biotechnol.
85
(
7
),
891
907
(
2010
).
9.
Z.
Yang
and
W.
Pan
, “
Ionic liquids: Green solvents for nonaqueous biocatalysis
,”
Enzyme Microb. Technol.
37
(
1
),
19
28
(
2005
).
10.
M.
Naushad
,
Z. A.
Alothman
,
A. B.
Khan
, and
M.
Ali
, “
Effect of ionic liquid on activity, stability, and structure of enzymes: A review
,”
Int. J. Biol. Macromol.
51
(
4
),
555
560
(
2012
).
11.
E. C.
Wijaya
,
F.
Separovic
,
C. J.
Drummond
, and
T. L.
Greaves
, “
Activity and conformation of lysozyme in molecular solvents, protic ionic liquids (PILs) and salt-water systems
,”
Phys. Chem. Chem. Phys.
18
(
37
),
25926
25936
(
2016
).
12.
R. C.
Davies
,
A.
Neuberger
, and
B. M.
Wilson
, “
The dependence of lysozyme activity on pH and ionic strength
,”
Biochim. Biophys. Acta
178
(
2
),
294
305
(
1969
).
13.
H. B.
Jensen
and
K.
Kleppe
, “
Effect of ionic strength, pH, amines and divalent cations on the lytic activity of T4 lysozyme
,”
Eur. J. Biochem.
28
(
1
),
116
122
(
1972
).
14.
Y.
Abe
,
T.
Ueda
,
H.
Iwashita
,
Y.
Hashimoto
,
H.
Motoshima
,
Y.
Tanaka
, and
T.
Imoto
, “
Effect of salt concentration on the pKa of acidic residues in lysozyme
,”
J. Biochem.
118
(
5
),
946
952
(
1995
).
15.
S.
Venkataramani
,
J.
Truntzer
, and
D. R.
Coleman
, “
Thermal stability of high concentration lysozyme across varying pH: A Fourier transform infrared study
,”
J. Pharm. BioAllied Sci.
5
(
2
),
148
153
(
2013
).
16.
M.
Santiago
,
C. A.
Ramírez-Sarmiento
,
R. A.
Zamora
, and
L. P.
Parra
, “
Discovery, molecular mechanisms, and industrial applications of cold-active enzymes
,”
Front. Microbiol.
7
,
1408
(
2016
).
17.
J. A.
Littlechild
, “
Enzymes from extreme environments and their industrial applications
,”
Front. Bioeng. Biotechnol.
3
,
161
(
2015
).
18.
D.
Zarafeta
,
D.
Kissas
,
C.
Sayer
,
S. R.
Gudbergsdottir
,
E.
Ladoukakis
,
M. N.
Isupov
,
A.
Chatziioannou
,
X.
Peng
,
J. A.
Littlechild
,
G.
Skretas
, and
F. N.
Kolisis
, “
Discovery and characterization of a thermostable and highly halotolerant GH5 cellulase from an icelandic hot spring isolate
,”
PLoS One
11
(
1
),
1
18
(
2016
).
19.
E.
Gutiérrez-Arnillas
,
A.
Rodríguez
,
M. A.
Sanromán
, and
F. J.
Deive
, “
New sources of halophilic lipases: Isolation of bacteria from Spanish and Turkish saltworks
,”
Biochem. Eng. J.
109
,
170
177
(
2016
).
20.
A.
Salihu
and
M. Z.
Alam
, “
Review: Solvent tolerant lipases: A review
,”
Process Biochem.
50
,
86
96
(
2015
).
21.
M. A.
Rahman
,
U.
Culsum
,
W.
Tang
,
S. W.
Zhang
,
G.
Wu
, and
Z.
Liu
, “
Characterization of a novel cold active and salt tolerant esterase from zunongwangia profunda
,”
Enzyme Microb. Technol.
85
,
1
11
(
2016
).
22.
M.
Delgado-García
,
B.
Valdivia-Urdiales
,
C. N.
Aguilar-González
,
J. C.
Contreras-Esquivel
, and
R.
Rodríguez-Herrera
, “
Halophilic hydrolases as a new tool for the biotechnological industries
,”
J. Sci. Food Agric.
92
(
13
),
2575
2580
(
2012
).
23.
T. L.
Greaves
and
C. J.
Drummond
, “
Protic ionic liquids: Evolving structure-property relationships and expanding applications
,”
Chem. Rev.
115
(
20
),
11379
11448
(
2015
).
24.
R. E.
Canfield
, “
The amino acid sequence of egg white lysozyme
,”
J. Biol. Chem.
238
(
8
),
2698
2707
(
1963
).
25.
P.
Jolles
, “
Relationship between chemical structure and biological activity of hen egg-white lysozyme and lysozymes of different species
,”
Proc. R. Soc. B
167
(
1009
),
350
364
(
1967
).
26.
L. R.
Wetter
and
H. F.
Deutsch
, “
Immunological studies on egg white proteins
,”
J. Biol. Chem.
192
,
237
242
(
1951
).
27.
X.
Pan
,
S.
Yu
,
P.
Yao
, and
Z.
Shao
, “
Self-assembly of β-casein and lysozyme
,”
J. Colloid Interface Sci.
316
,
405
412
(
2007
).
28.
J.
Kong
and
S.
Yu
, “
Fourier transform infrared spectroscopic analysis of protein secondary structures
,”
Acta Biochim. Biophys. Sin.
39
(
8
),
549
559
(
2007
).
29.
V. K.
Ravi
,
T.
Swain
,
N.
Chandra
, and
R.
Swaminathan
, “
On the characterization of intermediates in the isodesmic aggregation pathway of hen lysozyme at alkaline pH
,”
PLoS One
9
(
1
),
1
12
(
2014
).
30.
F.
Makki
and
T. D.
Durance
, “
Thermal inactivation of lysozyme as influenced by pH, sucrose and sodium chloride and inactivation and preservative effect in beer
,”
Food Res. Int.
29
(
7
),
635
645
(
1996
).
31.
T. L.
Greaves
,
A.
Weerawardena
,
I.
Krodkiewska
, and
C. J.
Drummond
, “
Protic ionic liquids: Physicochemical properties and behavior as amphiphile self-assembly solvents
,”
J. Phys. Chem. B
112
(
3
),
896
905
(
2008
).
32.
T. F.
Kumosinski
and
H. M.
Farrell
, Jr.
, “
Determination of the global secondary structure of proteins by Fourier transform infrared (FTIR) spectroscopy
,”
Trends Food Sci. Technol.
4
(
6
),
169
175
(
1993
).
33.
S.
Venyaminov
and
N. N.
Kalnin
, “
Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. I. Spectral parameters of amino acid residue absorption bands
,”
Biopolymers
30
(
13-14
),
1243
1257
(
1990
).
34.
T. Q.
To
,
Investigation of the Acidity and Nucleophilicity of Ionic Liquid Mixtures and Their Effects on Reaction Rates
(
Imperial College
,
London, UK
,
2012
).
35.
M. Y.
Lobanov
,
N. S.
Bogatyreva
, and
O. V.
Galzitskaya
, “
Radius of gyration as an indicator of protein structure compactness
,”
Mol. Biol.
42
(
2
),
623
628
(
2008
).
36.
L.
Chen
,
G.
Wildegger
,
T.
Kiefhaber
,
K. O.
Hodgson
, and
S.
Doniach
, “
Kinetics of lysozyme refolding: Structural characterization of a non-specifically collapsed state using time-resolved x-ray scattering
,”
J. Mol. Biol.
276
(
1
),
225
237
(
1998
).
37.
D. I.
Svergun
,
C.
Barberato
, and
M. H. J.
Koch
, “
CRYSOL: A program to evaluate x-ray solution scatter of biological macromolecules from atomic coordinates
,”
J. Appl. Crystallogr.
28
(
6
),
768
773
(
1995
).
38.
I. K.
Voets
,
W. A.
Cruz
,
C.
Moitzi
,
P.
Lindner
,
E. P. G.
Arêas
, and
P.
Schurtenberger
, “
DMSO-induced denaturation of hen egg white lysozyme
,”
J. Phys. Chem. B
114
(
36
),
11875
11883
(
2010
).
39.
R. J.
Hamers
,
X.
Wang
,
R.
Franking
,
R.
Ruther
, and
C.
Stavis
, “
Infrared spectroscopy for characterization of biomolecular interfaces
,” in
Biointerface Characterization by Advanced IR Spectroscopy
(
Elsevier B.V.
,
2011
).
40.
F.
Meersman
and
K.
Heremans
, “
Temperature-induced dissociation of protein aggregates: Accessing the denatured state
,”
Biochemistry
42
(
48
),
14234
14241
(
2003
).
41.
J. T.
Pelton
and
L. R.
McLean
, “
Spectroscopic methods for analysis of protein secondary structure
,”
Anal. Biochem.
277
(
2
),
167
176
(
2000
).
42.
S.
Matheus
,
W.
Friess
, and
H.-C.
Mahler
, “
FTIR and nDSC as analytical tools for high-concentration protein formulations
,”
Pharm. Res.
23
(
6
),
1350
1363
(
2006
).
43.
A.
Zaks
and
A. M.
Klibanov
, “
Enzymatic catalysis in nonaqueous solvents
,”
J. Biol. Chem.
263
(
7
),
3194
3201
(
1988
).
44.
A.
Zaks
and
A. M.
Klibanov
, “
The effect of water on enzyme action in organic media
,”
J. Biol. Chem.
263
(
17
),
8017
8021
(
1988
).
45.
S. B.
Lee
and
K. J.
Kim
, “
Effect of water activity on enzyme hydration and enzyme reaction rate in organic solvents
,”
J. Ferment. Bioeng.
79
(
5
),
478
(
1995
).
46.
K. Y.
Chang
and
C. W.
Carr
, “
Studies on the structure and function of lysozyme. 1. The effect of pH and cation concentration on lysozyme activity
,”
Biochim. Biophys. Acta
229
(
2
),
496
503
(
1970
).
47.
J. P.
Mann
,
A.
McCluskey
, and
R.
Atkin
, “
Activity and thermal stability of lysozyme in alkylammonium formate ionic liquids-influence of cation modification
,”
Green Chem.
11
(
6
),
785
792
(
2009
).
48.
C. A.
Summers
and
R. A.
Flowers
, “
Protein renaturation by the liquid organic salt ethylammonium nitrate
,”
Protein Sci.
9
(
10
),
2001
2008
(
2000
).
49.
J.
Hansen
,
F.
Platten
,
D.
Wagner
, and
S. U.
Egelhaaf
, “
Tuning protein-protein interactions using cosolvents: Specific effects of ionic and non-ionic additives on protein phase behavior
,”
Phys. Chem. Chem. Phys.
18
(
15
),
10270
10280
(
2016
).
50.
P.
Bell-Upp
,
A. C.
Robinson
,
S. T.
Whitten
,
E. L.
Wheeler
,
J.
Lin
,
W. E.
Stites
, and
B.
García-Moreno E
, “
Thermodynamic principles for the engineering of pH-driven conformational switches and acid insensitive proteins
,”
Biophys. Chem.
159
(
1
),
217
226
(
2011
).
51.
I.
Boukhris
,
A.
Farhat-Khemakhem
,
M.
Blibech
,
K.
Bouchaala
, and
H.
Chouayekh
, “
Characterization of an extremely salt-tolerant and thermostable phytase from Bacillus amyloliquefaciens US573
,”
Int. J. Biol. Macromol.
80
(
Suppl. C
),
581
587
(
2015
).
52.
N.
Coquelle
,
R.
Talon
,
D. H.
Juers
,
É.
Girard
,
R.
Kahn
, and
D.
Madern
, “
Gradual adaptive changes of a protein facing high salt concentrations
,”
J. Mol. Biol.
404
(
3
),
493
505
(
2010
).
53.
S.
DasSarma
and
P.
DasSarma
, “
Halophiles and their enzymes: Negative put to good use
,”
Curr. Opin. Microbiol.
25
,
120
126
(
2015
).

Supplementary Material

You do not currently have access to this content.