Nanoscale structure of protic ionic liquids is critical to their utility as molecular electrochemical solvents since it determines the capacity to dissolve salts and polymers such as poly(ethylene oxide) (PEO). Here we use quantum chemical molecular dynamics simulations to investigate the impact of dissolved halide anions on the nanostructure of an archetypal nanostructured protic ionic liquid, propylammonium nitrate (PAN), and how this impacts the solvation of a model PEO polymer. At the molecular level, PAN is nanostructured, consisting of charged/polar and uncharged/nonpolar domains. The charged domain consists of the cation/anion charge groups, and is formed by their electrostatic interaction. This domain solvophobically excludes the propyl chains on the cation, which form a distinct, self-assembled nonpolar domain within the liquid. Our simulations demonstrate that the addition of Cl and Br anions to PAN disrupts the structure within the PAN charged domain due to competition between nitrate and halide anions for the ammonium charge centre. This disruption increases with halide concentration (up to 10 mol. %). However, at these concentrations, halide addition has little effect on the structure of the PAN nonpolar domain. Addition of PEO to pure PAN also disrupts the structure within the charged domain of the liquid due to hydrogen bonding between the charge groups and the terminal PEO hydroxyl groups. There is little other association between the PEO structure and the surrounding ionic liquid solvent, with strong PEO self-interaction yielding a compact, coiled polymer morphology. Halide addition results in greater association between the ionic liquid charge centres and the ethylene oxide components of the PEO structure, resulting in reduced conformational flexibility, compared to that observed in pure PAN. Similarly, PEO self-interactions increase in the presence of Cl and Br anions, compared to PAN, indicating that the addition of halide salts to PAN decreases its utility as a molecular solvent for polymers such as PEO.

1.
T.
Welton
,
Chem. Rev.
99
(
8
),
2071
2084
(
1999
).
2.
J.
Earle Martyn
and
R.
Seddon Kenneth
,
Pure Appl. Chem.
72
,
1391
(
2000
).
3.
C. P.
Fredlake
,
J. M.
Crosthwaite
,
D. G.
Hert
,
S. N. V. K.
Aki
, and
J. F.
Brennecke
,
J. Chem. Eng. Data
49
(
4
),
954
964
(
2004
).
4.
S. P.
Ong
,
O.
Andreussi
,
Y.
Wu
,
N.
Marzari
, and
G.
Ceder
,
Chem. Mater.
23
(
11
),
2979
2986
(
2011
).
5.
P. A.
Thomas
and
B. B.
Marvey
,
Molecules
21
(
2
),
184
(
2016
).
6.
E.
Ahmed
,
J.
Breternitz
,
M. F.
Groh
, and
M.
Ruck
,
CrystEngComm
14
(
15
),
4874
4885
(
2012
).
7.
S.
Seo
,
M.
Quiroz-Guzman
,
M. A.
DeSilva
,
T. B.
Lee
,
Y.
Huang
,
B. F.
Goodrich
,
W. F.
Schneider
, and
J. F.
Brennecke
,
J. Phys. Chem. B
118
(
21
),
5740
5751
(
2014
).
8.
T. L.
Greaves
and
C. J.
Drummond
,
Chem. Rev.
108
(
1
),
206
237
(
2008
).
9.
R.
Hayes
,
G. G.
Warr
, and
R.
Atkin
,
Chem. Rev.
115
(
13
),
6357
6426
(
2015
).
10.
R.
Atkin
and
G. G.
Warr
,
J. Phys. Chem. B
112
(
14
),
4164
4166
(
2008
).
11.
C.
Hardacre
,
J. D.
Holbrey
,
M.
Nieuwenhuyzen
, and
T. G. A.
Youngs
,
Acc. Chem. Res.
40
(
11
),
1146
1155
(
2007
).
12.
Y.
Wang
,
W.
Jiang
,
T.
Yan
, and
G. A.
Voth
,
Acc. Chem. Res.
40
(
11
),
1193
1199
(
2007
).
13.
J. N. A.
Canongia Lopes
and
A. A. H.
Pádua
,
J. Phys. Chem. B
110
(
7
),
3330
3335
(
2006
).
14.
T. L.
Greaves
,
D. F.
Kennedy
,
S. T.
Mudie
, and
C. J.
Drummond
,
J. Phys. Chem. B
114
(
31
),
10022
10031
(
2010
).
15.
A. J.
Page
,
A.
Elbourne
,
R.
Stefanovic
,
M. A.
Addicoat
,
G. G.
Warr
,
K.
Voitchovsky
, and
R.
Atkin
,
Nanoscale
6
(
14
),
8100
8106
(
2014
).
16.
B.
Rotenberg
and
M.
Salanne
,
J. Phys. Chem. Lett.
6
(
24
),
4978
4985
(
2015
).
17.
J.
Sweeney
,
F.
Hausen
,
R.
Hayes
,
G. B.
Webber
,
F.
Endres
,
M. W.
Rutland
,
R.
Bennewitz
, and
R.
Atkin
,
Phys. Rev. Lett.
109
(
15
),
155502
(
2012
).
18.
T.
Espinosa
,
M.
Jiménez
,
J.
Sanes
,
A.-E.
Jiménez
,
M.
Iglesias
, and
M.-D.
Bermúdez
,
Tribol. Lett.
53
(
1
),
1
9
(
2014
).
19.
A.
Basile
,
A. I.
Bhatt
, and
A. P.
O’Mullane
,
Nat. Commun.
7
,
ncomms11794
(
2016
).
20.
Z.
Xue
,
D.
He
, and
X.
Xie
,
J. Mater. Chem. A
3
(
38
),
19218
19253
(
2015
).
21.
D. W.
Kim
,
J.-K.
Park
,
H.-W.
Rhee
, and
H.
Kim
,
Polym. J.
26
,
993
1001
(
1994
).
22.
J. A.
Smith
,
G. B.
Webber
,
G. G.
Warr
,
A.
Zimmer
,
R.
Atkin
, and
O.
Werzer
,
J. Colloid Interface Sci.
430
,
56
60
(
2014
).
23.
O.
Werzer
,
G. G.
Warr
, and
R.
Atkin
,
J. Phys. Chem. B
115
(
4
),
648
652
(
2011
).
24.
H.-N.
Lee
and
T. P.
Lodge
,
J. Phys. Chem. Lett.
1
(
13
),
1962
1966
(
2010
).
25.
O.
Borodin
and
G. D.
Smith
,
Macromolecules
31
(
23
),
8396
8406
(
1998
).
26.
A.
Triolo
,
O.
Russina
,
U.
Keiderling
, and
J.
Kohlbrecher
,
J. Phys. Chem. B
110
(
4
),
1513
1515
(
2006
).
27.
Z.
Chen
,
P. A.
FitzGerald
,
G. G.
Warr
, and
R.
Atkin
,
Phys. Chem. Chem. Phys.
17
(
22
),
14872
14878
(
2015
).
28.
Z.
Chen
,
S.
McDonald
,
P. A.
Fitzgerald
,
G. G.
Warr
, and
R.
Atkin
,
Phys. Chem. Chem. Phys.
18
(
22
),
14894
14903
(
2016
).
29.
K.
Kodama
,
R.
Tsuda
,
K.
Niitsuma
,
T.
Tamura
,
T.
Ueki
,
H.
Kokubo
, and
M.
Watanabe
,
Polym. J.
43
(
3
),
242
248
(
2011
).
30.
R.
Hayes
,
S.
Imberti
,
G. G.
Warr
, and
R.
Atkin
,
Phys. Chem. Chem. Phys.
13
(
30
),
13544
13551
(
2011
).
31.
T.
Murphy
,
S. K.
Callear
,
G. G.
Warr
, and
R.
Atkin
,
Phys. Chem. Chem. Phys.
18
(
26
),
17169
17182
(
2016
).
32.
T.
Oncsik
,
G.
Trefalt
,
M.
Borkovec
, and
I.
Szilagyi
,
Langmuir
31
(
13
),
3799
3807
(
2015
).
33.
J.
Heyda
,
M.
Lund
,
M.
Oncak
,
P.
Slavicek
, and
P.
Jungwirth
,
J. Phys. Chem. B
114
(
33
),
10843
10852
(
2010
).
34.
E.
Leontidis
,
Curr. Opin. Colloid Interface Sci.
7
(
1
),
81
91
(
2002
).
35.
D.
Bilaničová
,
A.
Salis
,
B. W.
Ninham
, and
M.
Monduzzi
,
J. Phys. Chem. B
112
(
38
),
12066
12072
(
2008
).
36.
M.
Giesecke
,
G.
Mériguet
,
F.
Hallberg
,
Y.
Fang
,
P.
Stilbs
, and
I.
Furó
,
Phys. Chem. Chem. Phys.
17
(
5
),
3402
3408
(
2015
).
37.
M.
Gaus
,
Q.
Cui
, and
M.
Elstner
,
J. Chem. Theory Comput.
7
(
4
),
931
948
(
2011
).
38.
M.
Gaus
,
A.
Goez
, and
M.
Elstner
,
J. Chem. Theory Comput.
9
(
1
),
338
354
(
2013
).
39.
M.
Kubillus
,
T.
Kubař
,
M.
Gaus
,
J.
Řezáč
, and
M.
Elstner
,
J. Chem. Theory Comput.
11
(
1
),
332
342
(
2015
).
40.
M.
Elstner
,
P.
Hobza
,
T.
Frauenheim
,
S.
Suhai
, and
E.
Kaxiras
,
J. Chem. Phys.
114
(
12
),
5149
5155
(
2001
).
41.
B.
Aradi
,
B.
Hourahine
, and
T.
Frauenheim
,
J. Phys. Chem. A
111
(
26
),
5678
5684
(
2007
).
42.
M.
Elstner
,
D.
Porezag
,
G.
Jungnickel
,
J.
Elsner
,
M.
Haugk
,
T.
Frauenheim
,
S.
Suhai
, and
G.
Seifert
,
Phys. Rev. B
58
(
11
),
7260
7268
(
1998
).
43.
P.
Goyal
,
H.-J.
Qian
,
S.
Irle
,
X.
Lu
,
D.
Roston
,
T.
Mori
,
M.
Elstner
, and
Q.
Cui
,
J. Phys. Chem. B
118
(
38
),
11007
11027
(
2014
).
44.
T.
Zentel
and
O.
Kuhn
,
J. Chem. Phys.
145
(
23
),
234504
(
2016
).
45.
M. A.
Addicoat
,
R.
Stefanovic
,
G. B.
Webber
,
R.
Atkin
, and
A. J.
Page
,
J. Chem. Theory Comput.
10
(
10
),
4633
4643
(
2014
).
46.
R.
Stefanovic
,
M.
Ludwig
,
G. B.
Webber
,
R.
Atkin
, and
A. J.
Page
,
Phys. Chem. Chem. Phys.
19
(
4
),
3297
3306
(
2017
).
47.
L.
Martinez
,
R.
Andrade
,
E. G.
Birgin
, and
J. M.
Martinez
,
J. Comput. Chem.
30
(
13
),
2157
2164
(
2009
).
48.
M.
Brehm
and
B.
Kirchner
,
J. Chem. Inf. Model.
51
(
8
),
2007
2023
(
2011
).
49.
R.
Atkin
and
G. G.
Warr
,
J. Phys. Chem. C
111
(
13
),
5162
5168
(
2007
).
50.
T.
Méndez-Morales
,
J.
Carrete
,
Ó.
Cabeza
,
O.
Russina
,
A.
Triolo
,
L. J.
Gallego
, and
L. M.
Varela
,
J. Phys. Chem. B
118
(
3
),
761
770
(
2014
).
51.
G.
Zhang
,
X.
Chen
,
Y.
Zhao
,
F.
Ma
,
B.
Jing
, and
H.
Qiu
,
J. Phys. Chem. B
112
(
21
),
6578
6584
(
2008
).
You do not currently have access to this content.