Ionic liquids (ILs) have been proven to be promising electrolytes for electrochemical energy storage devices such as supercapacitors and lithium ion batteries. In the last years, due to deficiency in storage of lithium on earth, innovative systems, such as sodium-based devices, attracted considerable attention. IL-based electrolytes have been proposed also as electrolytes for these devices. Nevertheless, in the case of these systems, the advantages and limits of IL-based electrolytes need to be further investigated. In this work we report an investigation about the chemical-physical properties of mixtures containing bis(2-methoxyethyl)ether diglyme (2G), which is presently considered as one of the most interesting solvents for sodium-based devices, and the ionic liquids 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) and 1-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PyrH4TFSI). The conductivities, viscosities, and densities of several mixtures of 2G and these ILs have been investigated. Furthermore, their impact on the electrochemical behaviour of activated carbon composite electrodes has been considered. The results of this investigation indicate that these mixtures are promising electrolytes for the realization of advanced sodium-based devices.

1.
A.
Brandt
,
S.
Pohlmann
,
A.
Varzi
,
A.
Balducci
, and
S.
Passerini
, “
Ionic liquids in supercapacitors
,”
MRS Bull.
38
,
554
559
(
2013
).
2.
M.
Lazzari
,
M.
Mastragostino
,
A.
Pandolfo
,
V.
Ruiz
, and
F.
Soavi
, “
Role of carbon porosity and ion size in the development of ionic liquid based supercapacitors
,”
J. Electrochem. Soc.
158
,
A22
A25
(
2011
).
3.
C.
Largeot
,
P.
Taberna
,
Y.
Gogotsi
, and
P.
Simon
, “
Microporous carbon-based electrical double layer capacitor operating at high temperature in ionic liquid electrolyte
,”
Electrochem. Solid-State Lett.
14
,
A174
A176
(
2011
).
4.
V.
Ruiz
,
T.
Huynh
,
S.
Sivakkumar
, and
A.
Pandolfo
, “
Ionic liquid–solvent mixtures as supercapacitor electrolytes for extreme temperature operation
,”
RSC Adv.
2
,
5591
5598
(
2012
).
5.
J.
Reiter
,
E.
Paillard
,
L.
Grande
,
M.
Winter
, and
S.
Passerini
, “
Physicochemical properties of N-methoxyethyl-N-methylpyrrolidinum ionic liquids with perfluorinated anions
,”
Electrochim. Acta
91
,
101
107
(
2013
).
6.
T.
Tooming
,
T.
Thomberg
,
L.
Siinor
,
K.
Tõnurist
,
A.
Jänes
, and
E.
Lust
, “
A type high capacitance supercapacitor based on mixed room temperature ionic liquids containing specifically adsorbed iodide anions
,”
J. Electrochem. Soc.
161
,
A222
A227
(
2014
).
7.
S.
Menne
,
M.
Schroeder
,
T.
Vogl
, and
A.
Balducci
, “
Carbonaceous anodes for lithium-ion batteries in combination with protic ionic liquids-based electrolytes
,”
J. Power Sources
266
,
208
212
(
2014
).
8.
T.
Vogl
,
S.
Passerini
, and
A.
Balducci
, “
The impact of mixtures of protic ionic liquids on the operative temperature range of use of battery systems
,”
Electrochem. Commun.
78
,
47
50
(
2017
).
9.
S.
Menne
,
J.
Pires
,
M.
Anouti
, and
A.
Balducci
, “
Protic ionic liquids as electrolytes for lithium-ion batteries
,”
Electrochem. Commun.
31
,
39
41
(
2013
).
10.
M.
Ishikawa
,
T.
Sugimoto
,
M.
Kikuta
,
E.
Ishiko
, and
M.
Kono
, “
Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries
,”
J. Power Sources
162
,
658
662
(
2006
).
11.
A.
Balducci
, “
Ionic liquids in lithium-ion batteries
,”
Top. Curr. Chem.
375
,
20
(
2017
).
12.
C.
Arbizzani
,
G.
Gabrielli
, and
M.
Mastragostino
, “
Thermal stability and flammability of electrolytes for lithium-ion batteries
,”
J. Power Sources
196
,
4801
4805
(
2011
).
13.
R.-S.
Kühnel
,
N.
Böckenfeld
,
S.
Passerini
,
M.
Winter
, and
A.
Balducci
, “
Mixtures of ionic liquid and organic carbonate as electrolyte with improved safety and performance for rechargeable lithium batteries
,”
Electrochim. Acta
56
,
4092
4099
(
2011
).
14.
S.
Wilken
,
S.
Xiong
,
J.
Scheers
,
P.
Jacobsson
, and
P.
Johansson
, “
Ionic liquids in lithium battery electrolytes: Composition versus safety and physical properties
,”
J. Power Sources
275
,
935
942
(
2015
).
15.
A.
Guerfi
,
M.
Dontigny
,
P.
Charest
,
M.
Petitclerc
,
M.
Lagacé
,
A.
Vijh
, and
K.
Zaghib
, “
Improved electrolytes for Li-ion batteries: Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance
,”
J. Power Sources
195
,
845
852
(
2010
).
16.
A.
Brandt
,
J.
Pires
,
M.
Anouti
, and
A.
Balducci
, “
An investigation about the cycling stability of supercapacitors containing protic ionic liquids as electrolyte components
,”
Electrochim. Acta
108
,
226
231
(
2013
).
17.
T.
Vogl
,
S.
Menne
,
R.-S.
Kühnel
, and
A.
Balducci
, “
The beneficial effect of protic ionic liquids on the lithium environment in electrolytes for battery applications
,”
J. Mater. Chem. A
2
,
8258
8265
(
2014
).
18.
S.
Menne
,
T.
Vogl
, and
A.
Balducci
, “
Lithium coordination in protic ionic liquids
,”
Phys. Chem. Chem. Phys.
16
,
5485
5489
(
2014
).
19.
T.
Vogl
,
S.
Menne
, and
A.
Balducci
, “
Mixtures of protic ionic liquids and propylene carbonate as advanced electrolytes for lithium-ion batteries
,”
Phys. Chem. Chem. Phys.
16
,
25014
25023
(
2014
).
20.
U.S.-Geological-Survey; Mineral-Commodity-Summaries, Mineral-Commodity-Summaries, 2017.
21.
B. L.
Ellis
and
L. F.
Nazar
, “
Sodium and sodium-ion energy storage batteries
,”
Curr. Opin. Solid State Mater. Sci.
16
,
168
177
(
2012
).
22.
M. D.
Slater
,
D.
Kim
,
E.
Lee
, and
C. S.
Johnson
, “
Sodium-ion batteries
,”
Adv. Funct. Mater.
23
,
947
958
(
2013
).
23.
B.
Jache
and
P.
Adelhelm
, “
Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena
,”
Angew. Chem., Int. Ed.
53
,
10169
10173
(
2014
).
24.
H.
Moon
,
R.
Tatara
,
T.
Mandai
,
K.
Ueno
,
K.
Yoshida
,
N.
Tachikawa
,
T.
Yasuda
,
K.
Dokko
, and
M.
Watanabe
, “
Mechanism of Li ion desolvation at the interface of graphite electrode and glyme–Li salt solvate ionic liquids
,”
J. Phys. Chem. C
118
,
20246
20256
(
2014
).
25.
A.
Ponrouch
,
D.
Monti
,
A.
Boschin
,
B.
Steen
,
P.
Johansson
, and
M.
Palacin
, “
Non-aqueous electrolytes for sodium-ion batteries
,”
J. Mater. Chem. A
3
,
22
42
(
2015
).
26.
I.
Hasa
,
S.
Passerini
, and
J.
Hassoun
, “
Characteristics of an ionic liquid electrolyte for sodium-ion batteries
,”
J. Power Sources
303
,
203
207
(
2016
).
27.
L.
Wu
,
A.
Moretti
,
D.
Buchholz
,
S.
Passerini
, and
D.
Bresser
, “
Combining ionic liquid-based electrolytes and nanostructured anatase Tio2 anodes for intrinsically safer sodium-ion batteries
,”
Electrochim. Acta
203
,
109
116
(
2016
).
28.
T.
Vogl
,
C.
Vaalma
,
D.
Buchholz
,
M.
Secchiaroli
,
R.
Marassi
,
S.
Passerini
, and
A.
Balducci
, “
The use of protic ionic liquids with cathodes for sodium-ion batteries
,”
J. Mater. Chem. A
4
,
10472
10478
(
2016
).
29.
K.
Yoshida
,
M.
Tsuchiya
,
N.
Tachikawa
,
K.
Dokko
, and
M.
Watanabe
, “
Change from glyme solutions to quasi-ionic liquids for binary mixtures consisting of lithium bis(trifluoromethanesulfonyl) amide and glymes
,”
J. Phys. Chem. C
115
,
18384
18394
(
2011
).
30.
M.
Egashira
,
T.
Asai
,
N.
Yoshimoto
, and
M.
Morita
, “
Ionic conductivity of ternary electrolyte containing sodium salt and ionic liquid
,”
Electrochim. Acta
58
,
95
98
(
2011
).
31.
L.
Timperman
,
P.
Skowron
,
A.
Boisset
,
H.
Galiano
,
D.
Lemordant
,
E.
Frackowiak
,
F.
Béguin
, and
M.
Anouti
, “
Triethylammonium bis(tetrafluoromethylsulfonyl) amide protic ionic liquid as an electrolyte for electrical double-layer capacitors
,”
Phys. Chem. Chem. Phys.
14
,
8199
8207
(
2012
).
32.
A.
Krause
,
P.
Kossyrev
,
M.
Oljaca
,
S.
Passerini
,
M.
Winter
, and
A.
Balducci
, “
Electrochemical double layer capacitor and lithium-ion capacitor based on carbon black
,”
J. Power Sources
196
,
8836
8842
(
2011
).
33.
S.
Pohlmann
,
B.
Lobato
,
T. A.
Centeno
, and
A.
Balducci
, “
The influence of pore size and surface area of activated carbons on the performance of ionic liquid based supercapacitors
,”
Phys. Chem. Chem. Phys.
15
,
17287
17294
(
2013
).
34.
T.
Vogl
,
Chemical-Physical Investigation of Protic Ionic Liquid-Based Electrolytes
(
Westfälische Wilhelms-Universität Münster
,
2016
).
35.
J.
Vila
,
P.
Gines
,
J.
Pico
,
C.
Franjo
,
E.
Jimenez
,
L.
Varela
, and
O.
Cabeza
, “
Temperature dependence of the electrical conductivity in emim-based ionic liquids: Evidence of Vogel–Tamman–Fulcher behavior
,”
Fluid Phase Equilib.
242
,
141
146
(
2006
).
36.
P.
Ruch
,
D.
Cericola
,
A.
Foelske-Schmitz
,
R.
Kötz
, and
A.
Wokaun
, “
Aging of electrochemical double layer capacitors with acetonitrile-based electrolyte at elevated voltages
,”
Electrochim. Acta
55
,
4412
4420
(
2010
).
37.
S.
Menne
,
T.
Vogl
, and
A.
Balducci
, “
The synthesis and electrochemical characterization of bis(fluorosulfonyl) imide-based protic ionic liquids
,”
Chem. Commun.
51
,
3656
3659
(
2015
).

Supplementary Material

You do not currently have access to this content.