We employ the Grand Canonical Adaptive Resolution Simulation (GC-AdResS) molecular dynamics technique to test the spatial locality of the 1-ethyl 3-methyl imidazolium chloride liquid. In GC-AdResS, atomistic details are kept only in an open sub-region of the system while the environment is treated at coarse-grained level; thus, if spatial quantities calculated in such a sub-region agree with the equivalent quantities calculated in a full atomistic simulation, then the atomistic degrees of freedom outside the sub-region play a negligible role. The size of the sub-region fixes the degree of spatial locality of a certain quantity. We show that even for sub-regions whose radius corresponds to the size of a few molecules, spatial properties are reasonably reproduced thus suggesting a higher degree of spatial locality, a hypothesis put forward also by other researchers and that seems to play an important role for the characterization of fundamental properties of a large class of ionic liquids.

1.
R.
Shi
and
Y.
Wang
, “
Dual ionic and organic nature of ionic liquids
,”
Sci. Rep.
6
,
19644
(
2016
).
2.
N. V.
Plechkova
and
K. R.
Seddon
, “
Applications of ionic liquids in the chemical industry
,”
Chem. Soc. Rev.
37
,
123
150
(
2008
).
3.
P.
Hapiot
and
C.
Lagrost
, “
Electrochemical reactivity in room-temperature ionic liquids
,”
Chem. Rev.
108
,
2238
2264
(
2008
).
4.
R.
Giernoth
, “
Task-specific ionic liquids
,”
Angew. Chem., Int. Ed.
49
,
2834
2839
(
2010
).
5.
A.
Sawant
,
D.
Raut
,
N.
Darvatkar
, and
M.
Salunkhe
, “
Recent developments of task-specific ionic liquids in organic synthesis
,”
Green Chem. Lett. Rev.
4
,
41
54
(
2011
).
6.
Y.
Sahbaz
,
H. D.
Williams
,
T.
Nguyen
,
J.
Saunders
,
L.
Ford
,
S. A.
Charman
,
P. J.
Scammells
, and
C. J. H.
Porter
, “
Transformation of poorly water-soluble drugs into lipophilic ionic liquids enhances oral drug exposure from lipid based formulations
,”
Mol. Pharmaceutics
12
,
1980
1991
(
2015
).
7.
M. L.
Hart
,
D. P.
Do
,
R. A.
Ansari
, and
S. A.
Rizvi
, “
Brief overview of various approaches to enhance drug solubility
,”
J. Dev. Drugs
2
,
1000110
1000116
(
2013
).
8.
M.
Lin
,
M.
Gong
,
B.
Lu
,
Y.
Wu
,
D.
Wang
,
M.
Guan
,
M.
Angell
,
C.
Chen
,
J.
Yang
,
B.
Hwang
 et al, “
An ultrafast rechargeable aluminium-ion battery
,”
Nature
520
,
324
328
(
2015
).
9.
G. M. A.
Girard
,
M.
Hilder
,
H.
Zhu
,
D.
Nucciarone
,
K.
Whitbread
,
S.
Zavorine
,
M.
Moser
,
M.
Forsyth
,
D. R.
MacFarlane
, and
P. C.
Howlett
, “
Electrochemical and physicochemical properties of small phosphonium cation ionic liquid electrolytes with high lithium salt content
,”
Phys. Chem. Chem. Phys.
17
,
8706
8713
(
2015
).
10.
D. M.
Piper
,
T.
Evans
,
K.
Leung
,
T.
Watkins
,
J.
Olson
,
S. C.
Kim
,
S. S.
Han
,
V.
Bhat
,
K. H.
Oh
,
D. A.
Buttry
 et al, “
Stable silicon-ionic liquid interface for next-generation lithium-ion batteries
,”
Nat. Commun.
6
,
6230
(
2015
).
11.
C.
Zhang
,
A.
Yamazaki
,
J.
Murai
,
J.
Park
,
T.
Mandai
,
K.
Ueno
,
K.
Dokko
, and
M.
Watanabe
, “
Chelate effects in glyme/lithium bis-(trifluoromethanesulfonyl)amide solvate ionic liquids, part 2: Importance of solvate-structure stability for electrolytes of lithium batteries
,”
J. Phys. Chem. C
118
,
17362
17373
(
2014
).
12.
M.
Taha
,
M. R.
Almeida
,
F. A.
Silva
,
P.
Domingues
,
S. P. M.
Ventura
,
J. A. P.
Coutinho
, and
M. G.
Freire
, “
Novel biocompatible and self-buffering ionic liquids for biopharmaceutical applications
,”
Chem. - Eur. J.
21
,
4781
4788
(
2015
).
13.
J.
Gorke
,
F.
Srienc
, and
R.
Kazlauskas
, “
Toward advanced ionic liquids. Polar, enzyme-friendly solvents for biocatalysis
,”
Biotechnol. Bioprocess Eng.
15
,
40
53
(
2010
).
14.
A. M.
Socha
,
R.
Parthasarathi
,
J.
Shi
,
S.
Pattathil
,
D.
Whyte
,
M.
Bergeron
,
A.
George
,
K.
Tran
,
V.
Stavila
,
S.
Venkatachalam
 et al, “
Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
E3587
E3595
(
2014
).
15.
H.
Wang
,
G.
Gurau
, and
R. D.
Rogers
, “
Ionic liquid processing of cellulose
,”
Chem. Soc. Rev.
41
,
1519
1537
(
2012
).
16.
T.
Mendez-Morales
,
J.
Carrete
,
O.
Cabeza
,
L. J.
Gallego
, and
L. M.
Varela
, “
Molecular dynamics simulation of the structure and dynamics of water-1-alkyl-3-methylimidazolium ionic liquid mixtures
,”
J. Phys. Chem. B
115
,
6995
7008
(
2011
).
17.
H.
Luo
,
S.
Dai
,
P. V.
Bonnesen
, and
A. C.
Buchanan
 III
, “
Separation of fission products based on ionic liquids: Task-specific ionic liquids containing an aza-crown ether fragment
,”
J. Alloys Compd.
418
,
195
199
(
2006
).
18.
S. M.
Urahata
and
M. C. C.
Ribeiro
, “
Structure of ionic liquids of 1-alkyl-3-methylimidazolium cations: A systematic computer simulation study
,”
J. Chem. Phys.
120
,
1855
(
2004
).
19.
Y.
Wang
and
G. A.
Voth
, “
Unique spatial heterogeneity in ionic liquids
,”
J. Am. Chem. Soc.
127
,
12192
12193
(
2005
).
20.
J. N. A.
Canongia Lopes
and
A. A. H.
Padua
, “
Nanostructural organization in ionic liquids
,”
J. Phys. Chem. B
110
,
3330
3335
(
2006
).
21.
Y.
Wang
and
G. A.
Voth
, “
Tail aggregation and domain diffusion in ionic liquids
,”
J. Phys. Chem. B
110
,
18601
18608
(
2006
).
22.
A.
Triolo
,
O.
Russina
,
H.-J.
Bleif
, and
E.
Di Cola
, “
Nanoscale segregation in room temperature ionic liquids
,”
J. Phys. Chem. B
111
,
4641
4644
(
2007
).
23.
J.
Schmidt
,
C.
Krekeler
,
F.
Dommert
,
Y.
Zhao
,
R.
Berger
,
L.
Delle Site
, and
C.
Holm
, “
Ionic charge reduction and atomic partial charges from first-principles calculations of 1,3-dimethylimidazolium chloride
,”
J. Phys. Chem. B
114
,
6150
6155
(
2010
).
24.
C.
Krekeler
,
F.
Dommert
,
J.
Schmidt
,
Y. Y.
Zhao
,
C.
Holm
,
R.
Berger
, and
L.
Delle Site
, “
Electrostatic properties of liquid 1,3-dimethylimidazolium chloride: Role of local polarization and effect of the bulk
,”
Phys. Chem. Chem. Phys.
12
,
1817
1821
(
2010
).
25.
K.
Wendler
,
S.
Zahn
,
F.
Dommert
,
R.
Berger
,
C.
Holm
,
B.
Kirchner
, and
L.
Delle Site
, “
Locality and fluctuations: Trends in imidazolium-based ionic liquids and beyond
,”
J. Chem. Theory Comput.
7
,
3040
3044
(
2011
).
26.
M.
Praprotnik
,
L.
Delle Site
, and
K.
Kremer
, “
Adaptive resolution molecular-dynamics simulation: Changing the degrees of freedom on the fly
,”
J. Chem. Phys.
123
,
224106
(
2005
).
27.
M.
Praprotnik
,
L.
Delle Site
, and
K.
Kremer
, “
Multiscale simulation of soft matter: From scale bridging to adaptive resolution
,”
Annu. Rev. Phys. Chem.
59
,
545
571
(
2008
).
28.
H.
Wang
,
C.
Schütte
, and
L.
Delle Site
, “
Adaptive resolution simulation (AdResS): A smooth thermodynamic and structural transition from atomistic to coarse grained resolution and vice versa in a grand canonical fashion
,”
J. Chem. Theory Comput.
8
,
2878
2887
(
2012
).
29.
H.
Wang
,
C.
Hartmann
,
C.
Schütte
, and
L.
Delle Site
, “
Grand-canonical-like molecular-dynamics simulations by using an adaptive-resolution technique
,”
Phys. Rev. X
3
,
011018
(
2013
).
30.
A.
Agarwal
,
J.
Zhu
,
C.
Hartmann
,
H.
Wang
, and
L.
Delle Site
, “
Molecular dynamics in a grand ensemble: Bergmann-Lebowitz model and adaptive resolution simulation
,”
New J. Phys.
17
,
083042
(
2015
).
31.
L.
Delle Site
and
M.
Praprotnik
, “
Molecular systems with open boundaries: Theory and simulation
,”
Phys. Rep.
693
,
1
56
(
2017
).
32.
B.
Lambeth
,
C.
Junghans
,
K.
Kremer
,
C.
Clementi
, and
L.
Delle Site
, “
On the locality of hydrogen bond networks at hydrophobic interfaces
,”
J. Chem. Phys.
133
,
221101
(
2010
).
33.
A.
Agarwal
,
C.
Clementi
, and
L.
Delle Site
, “
Path integral-GC-AdResS simulation of a large hydrophobic solute in water: A tool to investigate the interplay between local microscopic structures and quantum delocalization of atoms in space
,”
Phys. Chem. Chem. Phys.
19
,
13030
13037
(
2017
).
34.
C.
Krekeler
and
L.
Delle Site
, “
Towards open boundary molecular dynamics simulation of ionic liquids
,”
Phys. Chem. Chem. Phys.
19
,
4701
4709
(
2017
).
35.
M.
Praprotnik
,
S.
Matysiak
,
L.
Delle Site
,
K.
Kremer
, and
C.
Clementi
, “
Adaptive resolution simulation of liquid water
,”
J. Phys.: Condens. Matter
19
,
292201
(
2007
).
36.
S.
Poblete
,
M.
Praprotnik
,
K.
Kremer
, and
L.
Delle Site
, “
Coupling different levels of resolution in molecular simulations
,”
J. Chem. Phys.
132
,
114101
(
2010
).
37.
S.
Fritsch
,
S.
Poblete
,
C.
Junghans
,
G.
Ciccotti
,
L.
Delle Site
, and
K.
Kremer
, “
Adaptive resolution molecular dynamics simulation through coupling to an internal particle reservoir
,”
Phys. Rev. Lett.
108
,
170602
(
2012
).
38.
L.
Delle Site
, “
Formulation of Liouville’s theorem for grand ensemble molecular simulations
,”
Phys. Rev. E
93
,
022130
(
2016
).
39.
F.
Dommert
,
K.
Wendler
,
R.
Bergerm
,
L.
Delle Site
, and
C.
Holm
, “
Force fields for studying the structure and dynamics of ionic liquids: A critical review of recent developments
,”
ChemPhysChem
13
,
1625
(
2012
).
40.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
, “
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation
,”
J. Chem. Theory Comput.
4
,
435
(
2008
).
41.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
, “
Molecular dynamics with coupling to an external bath
,”
J. Chem. Phys.
81
,
3684
3690
(
1984
).
42.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
,
7182
(
1981
).
43.
D.
Reith
,
M.
Putz
, and
F.
Muller-Plathe
, “
Deriving effective mesoscale potentials from atomistic simulations
,”
J. Comput. Chem.
24
,
1624
1636
(
2003
).
44.
S.
Fritsch
,
C.
Junghans
, and
K.
Kremer
, “
Structure formation of toluene around C60: Implementation of the adaptive resolution scheme (AdResS) into GROMACS
,”
J. Chem. Theory Comput.
8
,
398
403
(
2012
).
45.
A. V.
Klinov
,
M. V.
Fedorov
,
A. V.
Malygin
, and
L. R.
Minibaeva
, “
Properties of an aqueous solution of ionic liquid [Emim][Cl] at standard atmospheric pressure
,”
Russ. J. Phys. Chem. A
88
,
1682
1688
(
2014
).
46.
A.
Agarwal
and
L.
Delle Site
, “
Path integral molecular dynamics within the grand canonical-like adaptive resolution technique: Simulation of liquid water
,”
J. Chem. Phys.
143
,
094102
(
2015
).
47.
J.
Peters
,
R.
Klein
, and
L.
Delle Site
, “
Simulation of macromolecular liquids with the adaptive resolution molecular dynamics technique
,”
Phys. Rev. E
94
,
023309
(
2016
).
48.
S.
Zahn
,
J.
Thar
, and
B.
Kirchner
, “
Structure and dynamics of the protic ionic liquid monomethylammonium nitrate ([CH3NH3][NO3]) from ab-initio molecular dynamics simulations
,”
J. Chem. Phys.
132
,
124506
(
2010
).
49.
T. I.
Morrow
and
E. J.
Maginn
, “
Molecular dynamics study of the ionic liquid 1-n-Butyl-3-methylimidazolium hexafluorophosphate
,”
J. Phys. Chem. B
106
,
12807
(
2002
).
50.
M. G. D.
Popolo
and
G. A.
Voth
, “
On the structure and dynamics of ionic liquids
,”
J. Phys. Chem. B
108
,
1744
(
2004
).
51.
D. A.
Turton
,
J.
Hunger
,
A.
Stoppa
,
G.
Hefter
,
M. W. A.
Thoman
,
R.
Buchner
, and
K.
Wynne
, “
Dynamics of imidazolium ionic liquids from a combined dielectric relaxation and optical Kerr effect study: Evidence for mesoscopic aggregation
,”
J. Am. Chem. Soc.
131
,
11140
(
2009
).
52.
J.
Zavadlav
and
M.
Praprotnik
, “
Adaptive resolution simulations coupling atomistic water to dissipative particle dynamics
,”
J. Chem. Phys.
147
,
114110
(
2017
).
53.
L.
Delle Site
, “
Grand canonical adaptive resolution simulation for molecules with electrons: A theoretical framework based on physical consistency
,”
Comput. Phys. Commun.
222
,
94
(
2017
).
You do not currently have access to this content.