A benchmark set of relevant geometries of a model protein, the N-acetylphenylalanylamide, is presented to assess the validity of the approximate second-order coupled cluster (CC2) method in studying low-lying excited states of such bio-relevant systems. The studies comprise investigations of basis-set dependence as well as comparison with two multireference methods, the multistate complete active space 2nd order perturbation theory (MS-CASPT2) and the multireference difference dedicated configuration interaction (DDCI) methods. First of all, the applicability and the accuracy of the quasi-linear multireference difference dedicated configuration interaction method have been demonstrated on bio-relevant systems by comparison with the results obtained by the standard MS-CASPT2. Second, both the nature and excitation energy of the first low-lying excited state obtained at the CC2 level are very close to the Davidson corrected CAS+DDCI ones, the mean absolute deviation on the excitation energy being equal to 0.1 eV with a maximum of less than 0.2 eV. Finally, for the following low-lying excited states, if the nature is always well reproduced at the CC2 level, the differences on excitation energies become more important and can depend on the geometry.

1.
W.
Domcke
and
A. L.
Sobolewski
,
Phys. Chem. Chem. Phys.
12
,
4897
(
2010
).
2.
Y.
Chen
and
M. D.
Barkley
,
Biochemistry
37
,
9976
(
1998
).
3.
P. R.
Callis
and
T.
Liu
,
J. Phys. Chem. B
108
,
4248
(
2004
).
4.
M. A.
Robb
,
M.
Olivucci
, and
F.
Bernardi
, in
Encyclopedia of Computational Chemistry
, edited by
P.
von Ragué Schleyer
,
N. L.
Allinger
,
T.
Clark
,
J.
Gasteiger
,
P. A.
Kollman
,
H. F.
Schaefer
, and
P. R.
Schreiner
(
John Wiley & Sons, Ltd.
,
Chichester, UK
,
2002
).
5.
G. A.
Worth
and
L. S.
Cederbaum
,
Annu. Rev. Phys. Chem.
55
,
127
(
2004
).
6.
B. G.
Levine
and
T. J.
Martínez
,
Annu. Rev. Phys. Chem.
58
,
613
(
2007
).
7.
Conical Intersections: Electronic Structure, Dynamics & Spectroscopy
, edited by
W.
Domcke
,
D.
Yarkony
, and
H.
Köppel
(
World Scientific
,
River Edge, NJ
,
2004
).
8.
W.
Domcke
and
D. R.
Yarkony
,
Annu. Rev. Phys. Chem.
63
,
325
(
2012
).
9.
D. R.
Yarkony
,
Chem. Rev.
112
,
481
(
2012
).
10.
M.
Mališ
,
Y.
Loquais
,
E.
Gloaguen
,
H. S.
Biswal
,
F.
Piuzzi
,
B.
Tardivel
,
V.
Brenner
,
M.
Broquier
,
C.
Jouvet
,
M.
Mons
,
N.
Došlić
, and
I.
Ljubić
,
J. Am. Chem. Soc.
134
,
20340
(
2012
).
11.
M.
Mališ
,
Y.
Loquais
,
E.
Gloaguen
,
C.
Jouvet
,
V.
Brenner
,
M.
Mons
,
I.
Ljubić
, and
N.
Došlić
,
Phys. Chem. Chem. Phys.
16
,
2285
(
2014
).
12.
C.
Hättig
and
F.
Weigend
,
J. Chem. Phys.
113
,
5154
(
2000
).
13.
C.
Hättig
and
A.
Köhn
,
J. Chem. Phys.
117
,
6939
(
2002
).
14.
C.
Hättig
,
J. Chem. Phys.
118
,
7751
(
2003
).
15.
A.
Köhn
and
C.
Hättig
,
J. Chem. Phys.
119
,
5021
(
2003
).
16.
O.
Christiansen
,
H.
Koch
, and
P.
Jørgensen
,
Chem. Phys. Lett.
243
,
409
(
1995
).
17.
B.
Bories
,
D.
Maynau
, and
M.-L.
Bonnet
,
J. Comput. Chem.
28
,
632
(
2007
).
18.
N.
Ben Amor
,
F.
Bessac
,
S.
Hoyau
, and
D.
Maynau
,
J. Chem. Phys.
135
,
014101
(
2011
).
19.
C.
Chang
,
C. J.
Calzado
,
N.
Ben Amor
,
J.
Sanchez Marin
, and
D.
Maynau
,
J. Chem. Phys.
137
,
104102
(
2012
).
20.
D.
Shemesh
,
A. L.
Sobolewski
, and
W.
Domcke
,
J. Am. Chem. Soc.
131
,
1374
(
2009
).
21.
N.
Došlić
,
G.
Kovačević
, and
I.
Ljubić
,
J. Phys. Chem. A
111
,
8650
(
2007
).
22.
W. Y.
Sohn
,
V.
Brenner
,
E.
Gloaguen
, and
M.
Mons
,
Phys. Chem. Chem. Phys.
18
,
29969
(
2016
).
23.
N. O. C.
Winter
,
N. K.
Graf
,
S.
Leutwyler
, and
C.
Hattig
,
Phys. Chem. Chem. Phys.
15
,
6623
(
2013
).
24.
C.
Fang
,
B.
Oruganti
, and
B.
Durbeej
,
J. Phys. Chem. A
118
,
4157
(
2014
).
25.
D.
Tuna
,
D.
Lefrancois
,
Ł.
Wolański
,
S.
Gozem
,
I.
Schapiro
,
T.
Andruniów
,
A.
Dreuw
, and
M.
Olivucci
,
J. Chem. Theory Comput.
11
,
5758
(
2015
).
26.
F.
Plasser
,
R.
Crespo-Otero
,
M.
Pederzoli
,
J.
Pittner
,
H.
Lischka
, and
M.
Barbatti
,
J. Chem. Theory Comput.
10
,
1395
(
2014
).
27.
J.
Miralles
,
J.-P.
Daudey
, and
R.
Caballol
,
Chem. Phys. Lett.
198
,
555
(
1992
).
28.
J.
Miralles
,
O.
Castell
,
R.
Caballol
, and
J.-P.
Malrieu
,
Chem. Phys.
172
,
33
(
1993
).
29.
T.
Krah
,
N.
Ben Amor
, and
V.
Robert
,
Phys. Chem. Chem. Phys.
16
,
9509
(
2014
).
30.
J.
Zapata-Rivera
,
R.
Caballol
, and
C. J.
Calzado
,
J. Comput. Chem.
32
,
1144
(
2011
).
31.
C. J.
Calzado
,
N.
Ben Amor
, and
D.
Maynau
,
Chem. - Eur. J.
20
,
8979
(
2014
).
32.
C. J.
Calzado
and
D.
Maynau
,
J. Chem. Phys.
135
,
194704
(
2011
).
33.
J.
Finley
,
P.-Å.
Malmqvist
,
B. O.
Roos
, and
L.
Serrano-Andrés
,
Chem. Phys. Lett.
288
,
299
(
1998
).
34.
W.
Chin
,
M.
Mons
,
J.-P.
Dognon
,
R.
Mirasol
,
G.
Chass
,
I.
Dimicoli
,
F.
Piuzzi
,
P.
Butz
,
B.
Tardivel
,
I.
Compagnon
,
G.
von Helden
, and
G.
Meijer
,
J. Phys. Chem. A
109
,
5281
(
2005
).
35.
TURBOMOLE a Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 2012.
36.
F.
Furche
,
R.
Ahlrichs
,
C.
Hättig
,
W.
Klopper
,
M.
Sierka
, and
F.
Weigend
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
91
(
2014
).
37.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
38.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
,
J. Chem. Phys.
116
,
3175
(
2002
).
39.
I. M. B.
Nielsen
and
C. L.
Janssen
,
Chem. Phys. Lett.
310
,
568
(
1999
).
40.
C. L.
Janssen
and
I. M. B.
Nielsen
,
Chem. Phys. Lett.
290
,
423
(
1998
).
41.
B. O.
Roos
,
P. R.
Taylor
, and
P. E. M.
Siegbahn
,
Chem. Phys.
48
,
157
(
1980
).
42.
F.
Aquilante
,
L.
De Vico
,
N.
Ferré
,
G.
Ghigo
,
P. Å.
Malmqvist
,
P.
Neogrády
,
T. B.
Pedersen
,
M.
Pitoňák
,
M.
Reiher
,
B. O.
Roos
,
L.
Serrano-Andrés
,
M.
Urban
,
V.
Veryazov
, and
R.
Lindh
,
J. Comput. Chem.
31
,
224
(
2010
).
43.
D.
Maynau
,
S.
Evangelisti
,
N.
Guihéry
,
C. J.
Calzado
, and
J.-P.
Malrieu
,
J. Chem. Phys.
116
,
10060
(
2002
).
44.
N.
Ben Amor
,
B.
Bories
,
S.
Hoyau
, and
D.
Maynau
, DoLo and EXSCI codes are available on https://github.com/LCPQ/Cost_package.
45.
P.-O.
Widmark
,
P.-Å.
Malmqvist
, and
B. O.
Roos
,
Theor. Chim. Acta
77
,
291
(
1990
).
46.
F.
Aquilante
,
T. B.
Pedersen
, and
R.
Lindh
,
J. Chem. Phys.
126
,
194106
(
2007
).
47.
F.
Aquilante
,
P.-Å.
Malmqvist
,
T. B.
Pedersen
,
A.
Ghosh
, and
B. O.
Roos
,
J. Chem. Theory Comput.
4
,
694
(
2008
).
48.
H.
Koch
,
A.
Sánchez de Merás
, and
T. B.
Pedersen
,
J. Chem. Phys.
118
,
9481
(
2003
).
49.
E.
Rodríguez
and
M.
Reguero
,
J. Phys. Chem. A
106
,
504
(
2002
).
50.
E.
Papajak
,
J.
Zheng
,
X.
Xu
,
H. R.
Leverentz
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
7
,
3027
(
2011
).
51.
G.
Granucci
,
J. T.
Hynes
,
P.
Millié
, and
T.-H.
Tran-Thi
,
J. Am. Chem. Soc.
122
,
12243
(
2000
).
52.
P.
De Loth
,
P.
Cassoux
,
J. P.
Daudey
, and
J. P.
Malrieu
,
J. Am. Chem. Soc.
103
,
4007
(
1981
).
53.
D.
Ma
,
G.
Li Manni
, and
L.
Gagliardi
,
J. Chem. Phys.
135
,
044128
(
2011
).
54.
K. D.
Vogiatzis
,
G.
Li Manni
,
S. J.
Stoneburner
,
D.
Ma
, and
L.
Gagliardi
,
J. Chem. Theory Comput.
11
,
3010
(
2015
).

Supplementary Material

You do not currently have access to this content.