We study a model of flexible block copolymers (BCPs) in which there is an enlthalpic preference for orientational order, or local alignment, among like-block segments. We describe a generalization of the self-consistent field theory of flexible BCPs to include inter-segment orientational interactions via a Landau-de Gennes free energy associated with a polar or nematic order parameter for segments of one component of a diblock copolymer. We study the equilibrium states of this model numerically, using a pseudo-spectral approach to solve for chain conformation statistics in the presence of a self-consistent torque generated by inter-segment alignment forces. Applying this theory to the structure of lamellar domains composed of symmetric diblocks possessing a single block of “self-aligning” polar segments, we show the emergence of spatially complex segment order parameters (segment director fields) within a given lamellar domain. Because BCP phase separation gives rise to spatially inhomogeneous orientation order of segments even in the absence of explicit intra-segment aligning forces, the director fields of BCPs, as well as thermodynamics of lamellar domain formation, exhibit a highly non-linear dependence on both the inter-block segregation (χN) and the enthalpy of alignment (ε). Specifically, we predict the stability of new phases of lamellar order in which distinct regions of alignment coexist within the single mesodomain and spontaneously break the symmetries of the lamella (or smectic) pattern of composition in the melt via in-plane tilt of the director in the centers of the like-composition domains. We further show that, in analogy to Freedericksz transition confined nematics, the elastic costs to reorient segments within the domain, as described by the Frank elasticity of the director, increase the threshold value ε needed to induce this intra-domain phase transition.

1.
F. S.
Bates
and
G. H.
Fredrickson
, “
Block copolymer thermodynamics: Theory and experiment
,”
Annu. Rev. Phys. Chem.
41
,
525
557
(
1990
).
2.
G. M.
Grason
, “
The packing of soft materials: Molecular asymmetry, geometric frustration and optimal lattices in block copolymer melts
,”
Phys. Rep.
433
,
1
64
(
2006
).
3.
M. W.
Matsen
, “
Effect of architecture on the phase behavior of AB-type block copolymer melts
,”
Macromolecules
45
,
2161
2165
(
2012
).
4.
L.
Leibler
, “
Theory of microphase separation in block copolymers
,”
Macromolecules
13
,
1602
1617
(
1980
); e-print arXiv:0402594v3 [arXiv:cond-mat].
5.
E.
Helfand
, “
Theory of inhomogeneous polymers: Fundamentals of the Gaussian random-walk model
,”
J. Chem. Phys.
62
,
999
(
1975
).
6.
M. W.
Matsen
, “
The standard Gaussian model for block copolymer melts
,”
J. Phys.: Condens. Matter
14
,
R21
R47
(
2002
).
7.
A. K.
Khandpur
,
S.
Förster
,
F. S.
Bates
,
I. W.
Hamley
,
A. J.
Ryan
,
W.
Bras
,
K.
Almdal
, and
K.
Mortensen
, “
Polyisoprene-polystyrene diblock copolymer phase diagram near the order-disorder transition
,”
Macromolecules
28
,
8796
8806
(
1995
).
8.
G. H.
Fredrickson
and
E.
Helfand
, “
Fluctuation effects in the theory of microphase separation in block copolymers
,”
J. Chem. Phys.
87
,
697
705
(
1987
).
9.
M. W.
Matsen
and
M.
Schick
, “
Stable and unstable phases of a diblock copolymer melt
,”
Phys. Rev. Lett.
72
,
2660
2663
(
1994
).
10.
S. T.
Milner
, “
Chain architecture and asymmetry in copolymer microphases
,”
Macromolecules
27
,
2333
2335
(
1994
).
11.
C.
Burger
,
W.
Ruland
, and
A. N.
Semenov
, “
Polydispersity effects on the microphase-separation transition in block copolymers
,”
Macromolecules
23
,
3339
3346
(
1990
).
12.
J. Z. Y.
Chen
, “
Theory of wormlike polymer chains in confinement
,”
Prog. Polym. Sci.
54-55
,
3
46
(
2016
).
13.
V.
Pryamitsyn
and
V.
Ganesan
, “
Self-assembly of rod–coil block copolymers
,”
J. Chem. Phys.
120
,
5824
5838
(
2004
).
14.
M. W.
Matsen
and
C.
Barrett
, “
Liquid-crystalline behavior of rod-coil diblock copolymers
,”
J. Chem. Phys.
109
,
4108
4118
(
1998
).
15.
M. W.
Matsen
, “
Melts of semiflexible diblock copolymer
,”
J. Chem. Phys.
104
,
7758
7764
(
1996
).
16.
Y.
Jiang
,
W. Y.
Zhang
, and
J. Z.
Chen
, “
Dependence of the disorder-lamellar stability boundary of a melt of asymmetric wormlike AB diblock copolymers on the chain rigidity
,”
Phys. Rev. E
84
,
041803
(
2011
).
17.
Y.
Jiang
and
J. Z. Y.
Chen
, “
Influence of chain rigidity on the phase behavior of wormlike diblock copolymers
,”
Phys. Rev. Lett.
110
,
138305
(
2013
).
18.
C.
Singh
,
M.
Goulian
,
A. J.
Liu
, and
G. H.
Fredrickson
, “
Phase-behavior of semiflexible diblock copolymers
,”
Macromolecules
27
,
2974
2986
(
1994
).
19.
R.
Netz
and
M.
Schick
, “
Liquid-crystalline phases of semiflexible diblock copolymer melts
,”
Phys. Rev. Lett.
77
,
302
305
(
1996
).
20.
C.
Greco
,
Y.
Jiang
,
J. Z. Y.
Chen
,
K.
Kremer
, and
K. C.
Daoulas
, “
Maier-Saupe model of polymer nematics: Comparing free energies calculated with self consistent field theory and Monte Carlo simulations
,”
J. Chem. Phys.
145
,
184901
(
2016
).
21.
Y.
Jiang
,
S.
Li
, and
J. Z.
Chen
, “
Perspective: Parameters in a self-consistent field theory of multicomponent wormlike-copolymer melts
,”
Eur. Phys. J. E
39
,
91
(
2016
).
22.
I.
Prasad
,
Y.
Seo
,
L. M.
Hall
, and
G. M.
Grason
, “
Intradomain textures in block copolymers: Multizone alignment and biaxiality
,”
Phys. Rev. Lett.
118
,
247801
(
2017
); e-print arXiv:1612.07994.
23.
J.-P.
Carton
and
L.
Leibler
, “
Density-conformation coupling in macromolecular systems: Polymer interfaces
,”
J. Phys.
51
,
1683
1691
(
1990
).
24.
I.
Szleifer
and
B.
Widom
, “
Structure and tension of the interface between dilute polymer solutions
,”
J. Chem. Phys.
90
,
7524
7534
(
1989
).
25.
D. C.
Morse
and
G. H.
Fredrickson
, “
Semiflexible polymers near interfaces
,”
Phys. Rev. Lett.
73
,
3235
3238
(
1994
).
26.
S.
Li
,
Y.
Jiang
, and
J. Z. Y.
Chen
, “
Complex liquid-crystal nanostructures in semiflexible ABC linear triblock copolymers: A self-consistent field theory
,”
J. Chem. Phys.
145
,
184902
(
2016
).
27.
P. G.
de Gennes
and
J.
Prost
,
The Physics of Liquid Crystals
, 2nd ed. (
Clarendon
,
Oxford
,
1993
).
28.
W.
Zhao
,
T. P.
Russell
, and
G. M.
Grason
, “
Orientational interactions in block copolymer melts: Self-consistent field theory
,”
J. Chem. Phys.
137
,
104911
(
2012
).
29.

Note that the total derivative term proportional to d3x (∇⋅t) is also allowed by symmetry, but this vanishes for all periodic solutions of t(x).

30.
W.
Zhao
,
T. P.
Russell
, and
G. M.
Grason
, “
Chirality in block copolymer melts: Mesoscopic helicity from intersegment twist
,”
Phys. Rev. Lett.
110
,
058301
(
2013
); e-print arXiv:1210.1764.
31.
D. C.
Wright
and
N. D.
Mermin
, “
Crystalline liquids: The blue phases
,”
Rev. Mod. Phys.
61
,
385
(
1989
).
32.

Such an effect can be seen considering the moments of segment orientation, ⟨r⟩ and (r^)i(r^)j, for a chain held at fixed tension, with fixed contour length Na, but with variable Kuhn length a.

33.
K.
Rasmussen
and
G.
Kalosakas
, “
Improved numerical algorithm for exploring block copolymer mesophases
,”
J. Polym. Sci., Part B: Polym. Phys.
40
,
1777
1783
(
2002
).
34.
A.
Arora
,
J.
Qin
,
D. C.
Morse
,
K. T.
Delaney
,
G. H.
Fredrickson
,
F. S.
Bates
, and
K. D.
Dorfman
, “
Broadly accessible self-consistent field theory for block polymer materials discovery
,”
Macromolecules
49
,
4675
4690
(
2016
).
35.
B. P.
Flannery
,
S.
Teukolsky
,
W. H.
Press
, and
W. T.
Vetterling
,
Numerical Recipes in C: The Art of Scientific Computing
(
Cambridge University Press
,
2007
).
36.
D.
Svensek
,
G. M.
Grason
, and
R.
Podgornik
, “
Tensorial conservation law for nematic polymers
,”
Phys. Rev. E
88
,
052603
(
2013
).
37.
P.-G.
de Gennes
, “
Polymeric liquid crystals: Frank elasticity and light scattering
,”
Mol. Cryst. Liq. Cryst.
34
,
177
182
(
1976
).
38.
P.
Chaikin
and
T. C.
Lubensky
,
Principles of Condensed Matter Physics
(
Cambridge University Press
,
Cambridge
,
1995
).
39.
D. K.
Ding
and
E. L.
Thomas
, “
Influence of elastic anisotropy on the structure of Neel inversion walls in liquid crystal polymers
,”
Macromolecules
26
,
6531
6535
(
1993
).
40.
G. M.
Grason
, “
Chirality transfer in block copolymer melts: Emerging concepts
,”
ACS Macro Lett.
4
,
526
532
(
2015
).
41.
S.-H.
Wang
,
T.
Kawakatsu
,
P.
Chen
, and
C.-Y. D.
Lu
, “
A density functional theory of chiral block copolymer melts
,”
J. Chem. Phys.
138
,
194901
(
2013
).
42.
R.-M.
Ho
,
M.-C.
Li
,
H.-F.
Wang
,
Y.-D.
Lee
,
H.
Hasegawa
, and
E. L.
Thomas
, “
Transfer of chirality from molecule to phase in self-assembled chiral block copolymers
,”
J. Am. Chem. Soc.
134
,
10974
10986
(
2012
).
You do not currently have access to this content.