Understanding gas sorption by water in the atmosphere is an active research area because the gases can significantly alter the radiation and chemical properties of the atmosphere. We attempt to elucidate the molecular details of the gas sorption of water and three common atmospheric gases (N2O5, SO2, and O3) by water droplets/slabs in molecular dynamics simulations. The system size effects are investigated, and we show that the calculated solvation free energy decreases linearly as a function of the reciprocal of the number of water molecules from 1/215 to 1/1000 in both the slab and the droplet systems. By analyzing the infinitely large system size limit by extrapolation, we find that all our droplet results are more accurate than the slab results when compared to the experimental values. We also show how the choice of restraints in umbrella sampling can affect the sampling efficiency for the droplet systems. The free energy changes were decomposed into the energetic ΔU and entropic −TΔS contributions to reveal the molecular details of the gas sorption processes. By further decomposing ΔU into Lennard-Jones and Coulombic interactions, we observe that the ΔU trends are primarily determined by local effects due to the size of the gas molecule, charge distribution, and solvation structure around the gas molecule. Moreover, we find that there is a strong correlation between the change in the entropic contribution and the mean residence time of water, which is spatially nonlocal and related to the mobility of water.

1.
M.
Roeselová
,
P.
Jungwirth
,
D. J.
Tobias
, and
R. B.
Gerber
,
J. Phys. Chem. B
107
,
12690
(
2003
).
2.
J. L.
Jimenez
,
M. R.
Canagaratna
,
N. M.
Donahue
,
A. S. H.
Prevot
,
Q.
Zhang
,
J. H.
Kroll
,
P. F.
DeCarlo
,
J. D.
Allan
,
H.
Coe
,
N. L.
Ng
 et al,
Science
326
,
1525
(
2009
).
3.
V. F.
McNeill
and
P. A.
Ariya
,
Atmospheric and Aerosol Chemistry
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2014
).
4.
S.
Rossignol
,
L.
Tinel
,
A.
Bianco
,
M.
Passananti
,
M.
Brigante
,
D. J.
Donaldson
, and
C.
George
,
Science
353
,
699
(
2016
).
5.
J.
Julin
,
P. M.
Winkler
,
N. M.
Donahue
,
P. E.
Wagner
, and
I.
Riipinen
,
Environ. Sci. Technol.
48
,
12083
(
2014
).
6.
S.
Fuzzi
,
M. O.
Andreae
,
B. J.
Huebert
,
M.
Kulmala
,
T. C.
Bond
,
M.
Boy
,
S. J.
Doherty
,
A.
Guenther
,
M.
Kanakidou
,
K.
Kawamura
 et al,
Atmos. Chem. Phys.
6
,
2017
(
2006
).
7.
P. R.
Buseck
and
M.
Posfai
,
Proc. Natl. Acad. Sci. U. S. A.
96
,
3372
(
1999
).
8.
D. J.
Donaldson
and
V.
Vaida
,
Chem. Rev.
106
,
1445
(
2006
).
9.
S.
Schobesberger
,
H.
Junninen
,
F.
Bianchi
,
G.
Lönn
,
M.
Ehn
,
K.
Lehtipalo
,
J.
Dommen
,
S.
Ehrhart
,
I. K.
Ortega
,
A.
Franchin
 et al,
Proc. Natl. Acad. Sci. U. S. A.
110
,
17223
(
2013
).
10.
J. P. D.
Abbatt
,
A. K. Y.
Lee
, and
J. A.
Thornton
,
Chem. Soc. Rev.
41
,
6555
(
2012
).
11.
C. E.
Kolb
,
R. A.
Cox
,
J. P. D.
Abbatt
,
M.
Ammann
,
E. J.
Davis
,
D. J.
Donaldson
,
B. C.
Garrett
,
C.
George
,
P. T.
Griffiths
,
D. R.
Hanson
 et al,
Atmos. Chem. Phys.
10
,
10561
(
2010
).
12.
D. J.
Donaldson
and
K. T.
Valsaraj
,
Environ. Sci. Technol.
44
,
865
(
2010
).
13.
B. C.
Garrett
,
G. K.
Schenter
, and
A.
Morita
,
Chem. Rev.
106
,
1355
(
2006
).
14.
J.
Julin
,
M.
Shiraiwa
,
R. H.
Miles
,
J. P.
Reid
,
U.
Pöschl
, and
I.
Riipinen
,
J. Phys. Chem. A
117
,
410
(
2013
).
15.
R.
Vácha
,
P.
Slavíček
,
M.
Mucha
,
B. J.
Finlayson-Pitts
, and
P.
Jungwirth
,
J. Phys. Chem. A
108
,
11573
(
2004
).
16.
J.
Vieceli
,
M.
Roeselova
,
N.
Potter
,
L. X.
Dang
,
B. C.
Garrett
, and
D. J.
Tobias
,
J. Phys. Chem. B
109
,
15876
(
2005
).
17.
L. X.
Dang
and
B. C.
Garrett
,
Chem. Phys. Lett.
385
,
309
(
2004
).
18.
M. A.
Carignano
,
M. M.
Jacob
, and
E. E.
Avila
,
J. Phys. Chem. A
112
,
3676
(
2008
).
19.
A.
Morita
,
M.
Sugiyama
,
H.
Kameda
,
S.
Koda
, and
D. R.
Hanson
,
J. Phys. Chem. B
108
,
9111
(
2004
).
20.
M.
Matsumoto
,
Fluid Phase Equilib.
125
,
195
(
1996
).
21.
R. D.
Hoehn
,
M. A.
Carignano
,
S.
Kais
,
C.
Zhu
,
J.
Zhong
,
X. C.
Zeng
,
J. S.
Francisco
, and
I.
Gladich
,
J. Chem. Phys.
144
,
214701
(
2016
).
22.
R. S.
Taylor
and
B. C.
Garrett
,
J. Phys. Chem. B
103
,
844
(
1999
).
23.
M.
Sayou
,
R.
Ishizuka
, and
N.
Matubayasi
,
J. Phys. Chem. B
121
,
5995
(
2017
).
24.
G.
Ergin
and
S.
Takahama
,
J. Phys. Chem. A
120
,
2885
(
2016
).
25.
S.
Takahama
and
L. M.
Russell
,
J. Geophys. Res.
116
,
D02203
, https://doi.org/10.1029/2010jd014842 (
2011
).
26.
S.
Sakaguchi
and
A.
Morita
,
J. Chem. Phys.
137
,
064701
(
2012
).
27.
I.
Gladich
,
A.
Habartová
, and
M.
Roeselová
,
J. Phys. Chem. A
118
,
1052
(
2014
).
28.
D. B.
Considine
,
A. R.
Douglass
, and
R. S.
Stolarski
,
Geophys. Res. Lett.
19
,
397
, https://doi.org/10.1029/92gl00125 (
1992
).
29.
J. M.
Rodriguez
,
M. K. W.
Ko
, and
N. D.
Sze
,
Nature
352
,
134
(
1991
).
30.
F. J.
Dentener
and
P. J.
Crutzen
,
J. Geophys. Res.: Atmos.
98
,
7149
, https://doi.org/10.1029/92jd02979 (
1993
).
31.
C.
Granier
and
G.
Brasseur
,
J. Geophys. Res.
97
,
18015
, https://doi.org/10.1029/92jd02021 (
1992
).
32.
N.
Riemer
,
H.
Vogel
,
B.
Vogel
,
B.
Schell
,
I.
Ackermann
,
C.
Kessler
, and
H.
Hass
,
J. Geophys. Res.
108
,
4144
, https://doi.org/10.1029/2002jd002436 (
2003
).
33.
S. T.
Ishikawa
and
T.
Nakajima
,
Int. J. Quantum Chem.
109
,
2143
(
2009
).
34.
D.
Hanway
and
F.-M.
Tao
,
Chem. Phys. Lett.
285
,
459
(
1998
).
35.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindah
,
SoftwareX
1-2
,
19
(
2015
).
36.
J.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
,
P. A.
Kollman
, and
D. A.
Case
,
J. Comput. Chem.
25
,
1157
(
2004
).
37.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
38.
S.
Miyamoto
and
P. A.
Kollman
,
J. Comput. Chem.
13
,
952
(
1992
).
39.
F.-Y.
Dupradeau
,
A.
Pigache
,
T.
Zaffran
,
C.
Savineau
,
R.
Lelong
,
N.
Grivel
,
D.
Lelong
,
W.
Rosanski
, and
P.
Cieplak
,
Phys. Chem. Chem. Phys.
12
,
7821
(
2010
).
40.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
,
J. Chem. Phys.
126
,
014101
(
2007
).
41.
M.
Sega
and
C.
Dellago
,
J. Phys. Chem. B
121
,
3798
(
2017
).
42.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
,
J. Chem. Phys.
103
,
8577
(
1995
).
43.
G. M.
Torrie
and
J. P.
Valleau
,
J. Comput. Phys.
23
,
187
(
1977
).
44.
G. A.
Tribello
,
M.
Bonomi
,
D.
Branduardi
,
C.
Camilloni
, and
G.
Bussi
,
Comput. Phys. Commun.
185
,
604
(
2014
).
45.
S.
Kumar
,
J. M.
Rosenberg
,
D.
Bouzida
,
R. H.
Swendsen
, and
P. A.
Kollman
,
J. Comput. Chem.
13
,
1011
(
1992
).
46.
A.
Grossfield
, “
WHAM: The weighted histogram analysis method
,” v2.0.9, http://membrane.urmc.rochester.edu/content/wham.
47.
R.
Sander
,
Atmos. Chem. Phys.
15
,
4399
(
2015
).
48.
D. E.
Otten
,
P. R.
Shaffer
,
P. L.
Geissler
, and
R. J.
Saykally
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
701
(
2012
).
49.
R.
Kumar
,
C.
Knight
, and
G. A.
Voth
,
Faraday Discuss.
167
,
263
(
2013
).
50.
Y.-L. S.
Tse
,
C.
Chen
,
G. E.
Lindberg
,
R.
Kumar
, and
G. A.
Voth
,
J. Am. Chem. Soc.
137
,
12610
(
2015
).
51.

The first solvation shells are 3.35, 6.05, 5.45, and 5.35 Å for H2O, N2O5, O3, and SO2, respectively.

52.
A. P.
Willard
and
D.
Chandler
,
J. Phys. Chem. B
114
,
1954
(
2010
).
53.
M.
Sega
,
S. S.
Kantorovich
,
P.
Jedlovszky
, and
M.
Jorge
,
J. Chem. Phys.
138
,
044110
(
2013
).
54.
Y.-L. S.
Tse
,
H. N.
Sarode
,
G. E.
Lindberg
,
T. A.
Witten
,
Y.
Yang
,
A. M.
Herring
, and
G. A.
Voth
,
J. Phys. Chem. C
118
,
845
(
2014
).

Supplementary Material

You do not currently have access to this content.