High-temperature and high-pressure experiments were performed under 2–55 GPa and 298–653 K using in situ Raman spectroscopy and X-ray diffraction combined with externally heated diamond anvil cells to investigate the stability of methane hydrate. Prior to in situ experiments, the typical C–H vibration modes of methane hydrate and their pressure dependence were measured at room temperature using Raman spectroscopy to make a clear discrimination between methane hydrate and solid methane which forms through the decomposition of methane hydrate at high temperature. The sequential in situ Raman spectroscopy and X-ray diffraction revealed that methane hydrate survives up to 633 K and 40.3 GPa and then decomposes into solid methane and ice VII above the conditions. The decomposition curve of methane hydrate estimated by the present experiments is >200 K lower than the melting curves of solid methane and ice VII, and moderately increases with increasing pressure. Our result suggests that although methane hydrate may be an important candidate for major constituents of cool exoplanets and other icy bodies, it is unlikely to be present in the ice mantle of Neptune and Uranus, where the temperature is expected to be far beyond the decomposition temperatures.

1.
E. D.
Sloan
and
K. A.
Koh
,
Clathrate Hydrates of Natural Gases
, 3rd ed. (
Taylor & Francis
,
London, New York
,
2008
), pp. 45, 257, 320, and 537.
2.
H.
Hirai
,
T.
Tanaka
,
T.
Kawamura
,
Y.
Yamamoto
, and
T.
Yagi
,
J. Phys. Chem. Solids
65
,
1555
(
2004
).
3.
W. L.
Mao
,
C. A.
Koh
, and
E. D.
Sloan
,
Phys. Today
60
(
10
),
42
(
2007
).
4.
H.
Hirai
,
Y.
Uchihara
,
H.
Fujihisa
,
M.
Sakashita
,
E.
Katoh
,
K.
Aoki
,
K.
Nagashima
,
Y.
Yamamoto
, and
T.
Yagi
,
J. Chem. Phys.
115
,
7066
(
2001
).
5.
J. S.
Loveday
,
R. J.
Nelmes
,
M.
Guthrie
,
D. D.
Klug
, and
J. S.
Tse
,
Phys. Rev. Lett.
87
,
215501
(
2001
).
6.
J. S.
Loveday
,
R. J.
Nelmes
,
M.
Guthrle
,
S. A.
Belmonte
,
D. R.
Allan
,
D. D.
Klug
,
J. S.
Tse
, and
Y. P.
Handa
,
Nature
410
,
661
(
2001
).
7.
H.
Hirai
,
T.
Tanaka
,
T.
Kawamura
,
Y.
Yamamoto
, and
T.
Yagi
,
Phys. Rev. B
68
,
172102
(
2003
).
8.
I.-M.
Chou
,
A.
Sharma
,
R. C.
Burruss
,
J.
Shu
,
H. K.
Mao
,
R. J.
Hemley
,
A. F.
Goncharov
,
L. A.
Stern
, and
S. H.
Kirby
,
Proc. Natl. Acad. Sci. U. S. A.
97
,
13484
(
2000
).
9.
H.
Shimizu
,
T.
Kumazaki
,
T.
Kume
, and
S.
Sasaki
,
J. Phys. Chem.
106
,
30
(
2002
).
10.
H.
Hirai
,
S.
Machida
,
T.
Kawamura
,
Y.
Yamamoto
, and
T.
Yagi
,
Am. Mineral.
91
,
826
(
2006
).
11.
S.
Machida
,
H.
Hirai
,
T.
Kawamura
,
Y.
Yamamoto
, and
T.
Yagi
,
Phys. Earth Planet. Inter.
155
,
170
(
2006
).
12.
S.
Machida
,
H.
Hirai
,
T.
Kawamura
,
Y.
Yamamoto
, and
T.
Yagi
,
Phys. Chem. Miner.
34
,
31
(
2007
).
13.
T.
Tanaka
,
H.
Hirai
,
T.
Matsuoka
,
Y.
Ohishi
,
T.
Yagi
,
M.
Ohtake
,
Y.
Yamamoto
,
S.
Nakano
, and
T.
Irifune
,
J. Chem. Phys.
139
,
104701
(
2013
).
14.
T.
Iitaka
and
T.
Ebisuzaki
,
Phys. Rev. B
68
,
172105
(
2003
).
15.
A.
Kurnosov
,
L.
Dubrovinsky
,
A.
Kuznetsov
, and
V.
Dmitriev
,
Z. Naturforsch.
61
(
12
),
1573
(
2006
).
16.
L.
Bezacier
,
E.
Le Menn
,
O.
Grasset
,
O.
Bollengier
,
A.
Oancea
,
M.
Mezouar
, and
G.
Tobie
,
Phys. Earth Planet. Inter.
229
,
144
(
2014
).
17.
W. B.
Hubbard
,
W. J.
Nellis
,
A. C.
Mitchell
,
N. C.
Holmes
,
S. S.
Limaye
, and
P. C.
McCandless
,
Science
253
,
648
(
1991
).
18.
H. K.
Mao
,
J.
Xu
, and
P. M.
Bell
,
J. Geophys. Res.
91
(
B5
),
4673
, https://doi.org/10.1029/jb091ib05p04673 (
1986
).
19.
D.
Ragan
,
R.
Gustavsen
, and
D.
Schiferl
,
J. Appl. Phys.
72
(
12
),
5539
(
1992
).
20.
Y. P.
Handa
,
J. Chem. Thermodyn.
18
,
915
(
1986
).
21.
R.
Bini
,
L.
Ulivi
,
H. J.
Jodl
, and
P. R.
Salvi
,
J. Chem. Phys.
103
,
1353
(
1995
).
22.
Y. H.
Wu
,
S.
Sasaki
, and
H.
Shimizu
,
J. Raman Spectrosc.
26
,
963
(
1995
).
23.
H.
Kadobayashi
,
H.
Hirai
,
H.
Ohfuji
,
Y.
Kojima
,
Y.
Ohishi
,
N.
Hirao
,
M.
Ohtake
, and
Y.
Yamamoto
,
J. Phys.: Conf. Ser.
950
,
042044
(
2017
).
24.
H.
Hirai
,
K.
Konagai
,
T.
Kawamura
,
Y.
Yamamoto
, and
T.
Yagi
,
Phys. Lett.
454
,
212
(
2008
).
25.
P. N.
Chen
,
C. S.
Zha
,
X. J.
Chen
,
J.
Shu
,
R. J.
Hemley
, and
H. K.
Mao
,
Phys. Rev. B
84
(
10
),
104110
(
2011
).
26.
S. S.
Lobanov
,
P. N.
Chen
,
X. J.
Chen
,
C. S.
Zha
,
K. D.
Litasov
,
H. K.
Mao
, and
A. F.
Goncharov
,
Nat. Commun.
4
,
2446
(
2013
).
27.
J.
Lin
,
B.
Militzer
,
V. V.
Struzhkin
,
E.
Gregoryanz
,
R. J.
Hemley
, and
H. K.
Mao
,
J. Chem. Phys.
121
(
17
),
8423
(
2004
).
28.
K.
Shin
,
R.
Kumar
,
K. A.
Udachin
,
S.
Alavi
, and
J. A.
Ripmeester
,
Proc. Natl. Acad. Sci. U.S.A.
109
(
37
),
14785
(
2012
).
29.
You do not currently have access to this content.