Hydroxyapatite (HAp) is an important component of mammal bones and teeth, being widely used in prosthetic implants. Despite the importance of HAp in medicine, several promising applications involving this material (e.g., in photo-catalysis) depend on how well we understand its fundamental properties. Among the ones that are either unknown or not known accurately, we have the electronic band structure and all that relates to it, including the bandgap width. We employ state-of-the-art methodologies, including density hybrid-functional theory and many-body perturbation theory within the dynamically screened single-particle Green’s function approximation, to look at the optoelectronic properties of HAp. These methods are also applied to the calculation of defect levels. We find that the use of a mix of (semi-)local and exact exchange in the exchange-correlation functional brings a drastic improvement to the band structure. Important side effects include improvements in the description of dielectric and optical properties not only involving conduction band (excited) states but also the valence. We find that the highly dispersive conduction band bottom of HAp originates from anti-bonding σ* states along the ⋯OH–OH–⋯ infinite chain, suggesting the formation of a conductive 1D-ice phase. The choice of the exchange-correlation treatment to the calculation of defect levels was also investigated by using the OH-vacancy as a testing model. We find that donor and acceptor transitions obtained within semi-local density functional theory (DFT) differ from those of hybrid-DFT by almost 2 eV. Such a large discrepancy emphasizes the importance of using a high-quality description of the electron-electron interactions in the calculation of electronic and optical transitions of defects in HAp.

1.
V.
Bystrov
,
Math. Biol. Bioinform.
12
,
14
(
2017
).
2.
T.
Duminis
,
S.
Shahid
, and
R. G.
Hill
,
Front. Mater.
3
,
59
(
2017
).
3.
B. D.
Ratner
,
A. S.
Hoffman
,
F. J.
Schoen
, and
J. E.
Lemons
,
Biomaterials Science
(
Elsevier Science
,
2004
).
4.
M.
Epple
,
K.
Ganesan
,
R.
Heumann
,
J.
Klesing
,
A.
Kovtun
,
S.
Neumann
, and
V.
Sokolova
,
J. Mater. Chem.
20
,
18
(
2010
).
5.
V. S.
Bystrov
,
E.
Paramonova
,
Y.
Dekhtyar
,
A.
Katashev
,
A.
Karlov
,
N.
Polyaka
,
A.
Bystrova
,
A.
Patmalnieks
, and
A.
Kholkin
,
J. Phys.: Condens. Matter
23
,
065302
(
2011
).
6.
H.
Nishikawa
and
K.
Omamiuda
,
J. Mol. Catal. A: Chem.
179
,
193
(
2002
).
7.
V. S.
Bystrov
,
J.
Coutinho
,
A. V.
Bystrova
,
Y. D.
Dekhtyar
,
R. C.
Pullar
,
A.
Poronin
,
E.
Palcevskis
,
A.
Dindune
,
B.
Alkan
,
C.
Durucan
, and
E. V.
Paramonova
,
J. Phys. D: Appl. Phys.
48
,
195302
(
2015
).
8.
S. B.
Lang
,
S. A. M.
Tofail
,
A. L.
Kholkin
,
M.
Wojtaś
,
M.
Gregor
,
A. A.
Gandhi
,
Y.
Wang
,
S.
Bauer
,
M.
Krause
, and
A.
Plecenik
,
Sci. Rep.
3
,
2215
(
2013
).
9.
S.
Hu
,
F.
Jia
,
C.
Marinescu
,
F.
Cimpoesu
,
Y.
Qi
,
Y.
Tao
,
A.
Stroppa
, and
W.
Ren
,
RSC Adv.
7
,
21375
(
2017
).
10.
C.
Piccirillo
and
P. L.
Castro
,
J. Environ. Manage.
193
,
79
(
2017
).
11.
H.
Nishikawa
,
J. Mol. Catal. A: Chem.
207
,
149
(
2004
).
12.
H.
Nishikawa
,
S.
Kato
, and
T.
Ando
,
J. Mol. Catal. A: Chem.
236
,
145
(
2005
).
13.
K.
Ozeki
,
J. M.
Janurudin
,
H.
Aoki
, and
Y.
Fukui
,
Appl. Surf. Sci.
253
,
3397
(
2007
).
14.
M. P.
Reddy
,
A.
Venugopal
, and
M.
Subrahmanyam
,
Appl. Catal., B
69
,
164
(
2007
).
15.
J. H.
Shariffuddin
,
M. I.
Jones
, and
D. A.
Patterson
,
Chem. Eng. Res. Des.
91
,
1693
(
2013
).
16.
E. M.
Brazón
,
C.
Piccirillo
,
I.
Moreira
, and
P.
Castro
,
J. Environ. Manage.
182
,
486
(
2016
).
17.
T.
Anirudhan
,
J.
Deepa
, and
A. S.
Nair
,
J. Ind. Eng. Chem.
47
,
415
(
2017
).
19.
V.
Bystrov
,
C.
Piccirillo
,
D.
Tobaldi
,
P.
Castro
,
J.
Coutinho
,
S.
Kopyl
, and
R.
Pullar
,
Appl. Catal., B
196
,
100
(
2016
).
20.
G.
Rosenman
,
D.
Aronov
,
L.
Oster
,
J.
Haddad
,
G.
Mezinskis
,
I.
Pavlovska
,
M.
Chaikina
, and
A.
Karlov
,
J. Lumin.
122-123
,
936
(
2007
), International Conference on Luminescence and Optical Spectroscopy of Condensed Matter 2005.
21.
M.
Tsukada
,
M.
Wakamura
,
N.
Yoshida
, and
T.
Watanabe
,
J. Mol. Catal. A: Chem.
338
,
18
(
2011
).
22.
L.
Calderin
,
M.
Stott
, and
A.
Rubio
,
Phys. Rev. B
67
,
134106
(
2003
).
23.
P.
Rulis
,
L.
Ouyang
, and
W. Y.
Ching
,
Phys. Rev. B
70
,
155104
(
2004
).
24.
K.
Matsunaga
and
A.
Kuwabara
,
Phys. Rev. B
75
,
014102
(
2007
).
25.
A.
Slepko
and
A. A.
Demkov
,
Phys. Rev. B
84
,
134108
(
2011
).
26.
R.
Martin
,
L.
Reining
, and
D.
Ceperley
,
Interacting Electrons
(
Cambridge University Press
,
2016
).
27.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
28.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
29.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
(
1994
).
30.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
31.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
8207
(
2003
).
32.
A. V.
Krukau
,
O. A.
Vydrov
,
A. F.
Izmaylov
, and
G. E.
Scuseria
,
J. Chem. Phys.
125
,
224106
(
2006
).
33.
G.-X.
Qian
,
R. M.
Martin
, and
D. J.
Chadi
,
Phys. Rev. B
38
,
7649
(
1988
).
34.
A.
Resende
,
R.
Jones
,
S.
Öberg
, and
P. R.
Briddon
,
Phys. Rev. Lett.
82
,
2111
(
1999
).
35.
M.
Corno
,
C.
Busco
,
B.
Civalleri
, and
P.
Ugliengo
,
Phys. Chem. Chem. Phys.
8
,
2464
(
2006
).
37.
M.
van Schilfgaarde
,
T.
Kotani
, and
S.
Faleev
,
Phys. Rev. Lett.
96
,
226402
(
2006
).
38.
M.
Shishkin
,
M.
Marsman
, and
G.
Kresse
,
Phys. Rev. Lett.
99
,
246403
(
2007
).
39.
J.
Elliott
,
Structure and Chemistry of the Apatites and Other Calcium Orthophosphates, Studies in Inorganic Chemistry
(
Elsevier Science
,
Amsterdam
,
2013
), p.
404
.
40.
K. M.
Stadnicka
,
B. J.
Oleksyn
, and
K. Z.
Sokalski
,
Acta Crystallogr., Sect. A: Found. Crystallogr.
43
,
156
(
1987
).
41.
M.
Kay
,
R.
Young
, and
A.
Posner
,
Nature
204
,
1050
(
1964
).
42.
J.
Elliott
,
P.
Mackie
, and
R.
Young
,
Science
180
,
1055
(
1973
).
43.
J. M.
Hughes
and
J.
Rakovan
,
Rev. Mineral. Geochem.
48
,
1
(
2002
).
44.
T.
Ikoma
,
A.
Yamazaki
,
S.
Nakamura
, and
M.
Akao
,
J. Mater. Sci. Lett.
18
,
1225
(
1999
).
45.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
46.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
47.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
48.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
49.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
50.
S.
Nakamura
,
H.
Takeda
, and
K.
Yamashita
,
J. Appl. Phys.
89
,
5386
(
2001
).
51.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
52.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
,
J. Chem. Phys.
105
,
9982
(
1996
).
53.
R. W.
Nunes
and
X.
Gonze
,
Phys. Rev. B
63
,
155107
(
2001
).
54.
R. D.
King-Smith
and
D.
Vanderbilt
,
Phys. Rev. B
47
,
1651
(
1993
).
55.
I.
Souza
,
J.
Iniguez
, and
D.
Vanderbilt
,
Phys. Rev. Lett.
89
,
117602
(
2002
).
56.
M.
Born
and
K.
Huang
,
Dynamical Theory of Crystal Lattices
, International Series of Monographs on Physics (
Oxford University Press
,
Oxford
,
1954
).
57.
E.
Cockayne
and
B. P.
Burton
,
Phys. Rev. B
62
,
3735
(
2000
).
58.
O.
Kaygili
,
S.
Keser
,
T.
Ates
,
A. A.
Al-Ghamdi
, and
F.
Yakuphanoglu
,
Powder Technol.
245
,
1
(
2013
).
59.
T. P.
Hoepfner
and
E. D.
Case
,
J. Biomed. Mater. Res.
60
,
643
(
2002
).
60.
T. G.
Mayerhöfer
,
Appl. Spectrosc.
56
,
1194
(
2002
).
61.
T. G.
Mayerhöfer
and
J.
Popp
,
Icarus
203
,
303
(
2009
).
62.
64.
M.
Gajdos
,
K.
Hummer
,
G.
Kresse
,
J.
Furthmuller
, and
F.
Bechstedt
,
Phys. Rev. B
73
,
045112
(
2006
).
65.
M.
Shishkin
and
G.
Kresse
,
Phys. Rev. B
74
,
035101
(
2006
).
66.
F.
Fuchs
,
J.
Furthmüller
,
F.
Bechstedt
,
M.
Shishkin
, and
G.
Kresse
,
Phys. Rev. B
76
,
115109
(
2007
).
67.
F. J.
Cruz
,
M. E. M.
da Piedade
, and
J. C.
Calado
,
J. Chem. Thermodyn.
37
,
1061
(
2005
).
68.
J. L.
Katz
and
K.
Ukraincik
,
J. Biomech.
4
,
221
(
1971
).
69.
R. S.
Gilmore
and
J. L.
Katz
,
J. Mater. Sci.
17
,
1131
(
1982
).
70.
G.
Makov
and
M. C.
Payne
,
Phys. Rev. B
51
,
4014
(
1995
).
71.
C.
Freysoldt
,
J.
Neugebauer
, and
C. G.
Van de Walle
,
Phys. Rev. Lett.
102
,
016402
(
2009
).
72.
Y.
Kumagai
and
F.
Oba
,
Phys. Rev. B
89
,
195205
(
2014
).
73.
M. E.
Zilm
,
L.
Chen
,
V.
Sharma
,
A.
McDannald
,
M.
Jain
,
R.
Ramprasad
, and
M.
Wei
,
Phys. Chem. Chem. Phys.
18
,
16457
(
2016
).
74.
J.
Paier
,
M.
Marsman
, and
G.
Kresse
,
J. Chem. Phys.
127
,
024103
(
2007
).
76.
Z.
Yuan
,
T.
Gao
,
Y.
Zheng
,
S.
Ma
,
M.
Yang
, and
P.
Chen
,
RSC Adv.
7
,
30310
(
2017
).
77.
R. D.
Shannon
and
G. R.
Rossman
,
Phys. Chem. Miner.
19
,
157
(
1992
).
78.
A. A.
Mostofi
,
J. R.
Yates
,
G.
Pizzi
,
Y.-S.
Lee
,
I.
Souza
,
D.
Vanderbilt
, and
N.
Marzari
,
Comput. Phys. Commun.
185
,
2309
(
2014
).
79.
A. J.
Garza
and
G. E.
Scuseria
,
J. Phys. Chem. Lett.
7
,
4165
(
2016
).
80.
D.
Prendergast
,
J. C.
Grossman
, and
G.
Galli
,
J. Chem. Phys.
123
,
014501
(
2005
).
81.
E. A.
Engel
,
B.
Monserrat
, and
R. J.
Needs
,
J. Chem. Phys.
143
,
244708
(
2015
).
82.
H.-P.
Komsa
,
T. T.
Rantala
, and
A.
Pasquarello
,
Phys. Rev. B
86
,
045112
(
2012
).
83.
C. W. M.
Castleton
,
A.
Höglund
, and
S.
Mirbt
,
Phys. Rev. B
73
,
035215
(
2006
).
You do not currently have access to this content.