I develop a general mean-field theory for the influence of electrostatic attraction between two solids on the contact mechanics. I assume elastic solids with random surface roughness. I consider two cases, namely, with and without an electrically insulating layer between the conducting solids. The former case is important for, e.g., the finger–touch screen interaction. I study how the electrostatic attraction influences the adhesion and friction. For the case of an insulating layer, I find that when the applied nominal contact pressure is relatively small, as the applied voltage increases, there is a sharp increase in the contact area, and hence in the friction, at a critical voltage.

1.
B. N. J.
Persson
,
Sliding Friction: Physical Principles and Applications
(
Springer
,
Heidelberg
,
2000
).
2.
E.
Gnecco
and
E.
Meyer
,
Elements of Friction Theory and Nanotribology
(
Cambridge University Press
,
2015
).
3.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
, 3rd ed. (
Academic
,
London
,
2011
).
4.
M.
Wiertlewskia
,
R. F.
Friesena
, and
J. E.
Colgatea
, “
Partial squeeze film levitation modulates fingertip friction
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
9210
(
2016
).
5.
T.
Nakamura
and
A.
Yamamoto
, “
Modeling and control of electroadhesion force in DC voltage
,”
ROBOMECH J.
4
,
18
(
2017
).
6.
Y.
Vardar
,
B.
Güclü
, and
C.
Basdogan
, “
Effect of waveform on tactile perception by electrovibration displayed on touch screens
,”
IEEE Trans. Haptics
10
,
488
(
2017
).
7.
O.
Sirin
,
A.
Barrea
,
P.
Lefevre
,
J.-L.
Thonnard
, and
C.
Basdogan
, “
Experimental evaluation of contact mechanics for electrovibration
,” (to be published).
8.
D. J.
Meyer
,
M. A.
Peshkin
, and
J. E.
Colgate
,
Fingertip Friction Modulation Due to Electrostatic Attraction
[
World Haptics Conference (WHC)
,
2013
], pp.
43
48
.
9.
A.
Johnsen
and
K.
Rahbek
, “
A physical phenomenon and its applications to telegraphy, telephony, etc.
,”
J. Inst. Electr. Eng.
61
,
713
725
(
1923
).
10.
J. R.
Barber
, “
Bounds on the electrical resistance between contacting elastic rough bodies
,”
Proc. R. Soc. A
459
,
53
(
2003
).
11.
B. N. J.
Persson
,
B.
Lorenz
, and
A. I.
Volokitin
, “
Heat transfer between elastic solids with randomly rough surfaces
,”
Eur. Phys. J. E
31
,
3
(
2010
).
12.
C.
Campana
,
B. N. J.
Persson
, and
M. H.
Müser
, “
Transverse and normal interfacial stiffness of solids with randomly rough surfaces
,”
J. Phys.: Condens. Matter
23
,
085001
(
2011
).
13.
B. N. J.
Persson
, “
Theory of rubber friction and contact mechanics
,”
J. Chem. Phys.
115
,
3840
(
2001
).
14.
C.
Yang
and
B. N. J.
Persson
, “
Contact mechanics: Contact area and interfacial separation from small contact to full contact
,”
J. Phys.: Condens. Matter
20
,
215214
(
2008
).
15.
B. N. J.
Persson
, “
Relation between interfacial separation and load: A general theory of contact mechanics
,”
Phys. Rev. Lett.
99
,
125502
(
2007
).
16.
L.
Pastewka
,
N.
Prodanov
,
B.
Lorenz
,
M. H.
Müser
,
M. O.
Robbins
, and
B. N. J.
Persson
, “
Finite-size scaling in the interfacial stiffness of rough elastic contacts
,”
Phys. Rev. E
87
,
062809
(
2013
).
17.
A.
Almqvist
,
C.
Campana
,
N.
Prodanov
, and
B. N. J.
Persson
, “
Interfacial separation between elastic solids with randomly rough surfaces: Comparison between theory and numerical techniques
,”
J. Mech. Phys. Solids
59
,
2355
(
2011
).
18.
T.
Vodlak
,
Z.
Vidrih
,
E.
Vezzoli
,
B.
Lemaire-Semail
, and
D.
Peric
, “
Multi-physics modelling and experimental validation of electrovibration based haptic devices
,”
Biotribology
8
,
12
(
2016
).
19.
B. N. J.
Persson
, “
Capillary adhesion between elastic solids with randomly rough surfaces
,”
J. Phys.: Condens. Matter
20
,
315007
(
2008
).
20.
B. N. J.
Persson
and
M.
Scaraggi
, “
Theory of adhesion: Role of surface roughness
,”
J. Chem. Phys.
141
,
124701
(
2014
).
21.
K. G.
Rowe
,
A. I.
Bennett
,
B. A.
Krick
, and
W. G.
Sawyer
, “
In situ thermal measurements of sliding contacts
,”
Tribol. Int.
62
,
208
(
2013
).
22.
B.
Lorenz
,
Y. R.
Oh
,
S. K.
Nam
,
S. H.
Jeon
, and
B. N. J.
Persson
, “
Rubber friction on road surfaces: Experiment and theory for low sliding speeds
,”
J. Chem. Phys.
142
,
194701
(
2015
).
23.
B. N. J.
Persson
,
A.
Kovalev
, and
S. N.
Gorb
, “
Contact mechanics and friction on dry and wet human skin
,”
Tribol. Lett.
50
,
17
(
2013
).
24.
A. E.
Kovalev
,
K.
Dening
,
B. N. J.
Persson
, and
S. N.
Gorb
, “
Surface topography and contact mechanics of dry and wet human skin
,”
Beilstein J. Nanotechnol.
5
,
1341
(
2014
).
25.
I. M.
Sivebæk
,
V. N.
Samoilov
, and
B. N. J.
Persson
, “
Frictional properties of confined polymers
,”
Eur. Phys. J. E
27
(
1
),
37
(
2008
).
26.
B. N. J.
Persson
, “
Contact mechanics for layered materials with randomly rough surfaces
,”
J. Phys.: Condens. Matter
24
,
095008
(
2012
).
27.
See https://lmts.epfl.ch/electroadhesion for a movie about electro-adhesion for soft gripper.
28.
B. N. J.
Persson
, “
Adhesion between an elastic body and a randomly rough hard surface
,”
Eur. Phys. J. E: Soft Matter
8
,
385
(
2002
).
29.
F. W.
Strong
,
J. L.
Skinner
,
P. M.
Dentinger
, and
N. C.
Tien
, “
Electrical breakdown across micron scale gaps in MEMS structures
,”
Proc. SPIE
6111
,
611103
(
2006
).
You do not currently have access to this content.