Surface affinity of aqueous guanidinium chloride (GdmCl) is compared to that of aqueous tetrapropylammonium chloride (TPACl) upon addition of sodium chloride (NaCl) or disodium sulfate (Na2SO4). The experimental results have been acquired using the surface sensitive technique X-ray photoelectron spectroscopy on a liquid jet. Molecular dynamics simulations have been used to produce radial distribution functions and surface density plots. The surface affinities of both TPA+ and Gdm+ increase upon adding NaCl to the solution. With the addition of Na2SO4, the surface affinity of TPA+ increases, while that of Gdm+ decreases. From the results of MD simulations it is seen that Gdm+ and SO42 ions form pairs. This finding can be used to explain the decreased surface affinity of Gdm+ when co-dissolved with SO42 ions. Since SO42 ions avoid the surface due to the double charge and strong water interaction, the Gdm+-SO42 ion pair resides deeper in the solutions’ bulk than the Gdm+ ions. Since TPA+ does not form ion pairs with SO42, the TPA+ ions are instead enriched at the surface.

1.
N.
Ottosson
,
J.
Heyda
,
E.
Wernersson
,
W.
Pokapanich
,
S.
Svensson
,
B.
Winter
,
G.
Öhrwall
,
P.
Jungwirth
, and
O.
Björneholm
, “
The influence of concentration on the molecular surface structure of simple and mixed aqueous electrolytes
,”
Phys. Chem. Chem. Phys.
12
,
10693
(
2010
).
2.
J.
Werner
,
M.
Dalirian
,
M. M.
Walz
,
V.
Ekholm
,
U.
Wideqvist
,
S. J.
Lowe
,
G.
Öhrwall
,
I.
Persson
,
I.
Riipinen
, and
O.
Björneholm
, “
Surface partitioning in organic-inorganic mixtures contributes to the size-dependence of the phase-state of atmospheric nanoparticles
,”
Environ. Sci. Technol.
50
,
7434
7442
(
2016
).
3.
S.
Rajamani
,
T.
Ghosh
, and
S.
Garde
, “
Size dependent ion hydration, its asymmetry, and convergence to macroscopic behavior
,”
J. Chem. Phys.
120
,
4457
(
2004
).
4.
F.
Hofmeister
, “
Zur lehre von der wirkung der salze. Zweite mitteilung
,”
Arch. Exp. Pathol. Pharmakol.
24
,
247
260
(
1888
).
5.
S. C.
Flores
,
J.
Kherb
,
N.
Konelick
,
X.
Chen
, and
P. S.
Cremer
, “
The effects of Hofmeister cations at negatively charged hydrophilic surfaces
,”
J. Phys. Chem. C
116
,
5730
5734
(
2012
).
6.
W.
Kunz
,
J.
Henle
, and
B.
Ninham
, “‘
Zur lehre von der wirkung der salze’ (about the science of the effect of salts): Franz Hofmeister’s historical papers
,”
Curr. Opin. Colloid Interface Sci.
9
,
19
37
(
2004
).
7.
G.
Graziano
, “
Contrasting the denaturing effect of guanidinium chloride with the stabilizing effect of guanidinium sulfate
,”
Phys. Chem. Chem. Phys.
13
,
12008
12014
(
2011
).
8.
C. E.
Dempsey
,
P. E.
Mason
, and
P.
Jungwirth
, “
Complex ion effects on polypeptide conformational stability: Chloride and sulfate salts of guanidinium and tetrapropylammonium
,”
J. Am. Chem. Soc.
133
,
7300
7303
(
2011
).
9.
H. L.
Åmand
,
K.
Fant
,
B.
Nordén
, and
E. K.
Esbjörner
, “
Stimulated endocytosis in penetratin uptake: Effect of arginine and lysine
,”
Biochem. Biophys. Res. Commun.
371
,
621
625
(
2008
).
10.
C.
Allolio
,
K.
Baxova
,
M.
Vazdar
, and
P.
Jungwirth
, “
Guanidinium pairing facilitates membrane translocation
,”
J. Phys. Chem. B
120
,
143
153
(
2016
).
11.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
, “
Canonical sampling through velocity rescaling
,”
J. Chem. Phys.
126
,
014101
(
2007
).
12.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
, “
The missing term in effective pair potentials
,”
J. Phys. Chem.
91
,
6269
6271
(
1987
).
13.
P. E.
Mason
,
C. E.
Dempsey
,
L.
Vrbka
,
J.
Heyda
,
J. W.
Brady
, and
P.
Jungwirth
, “
Specificity of ion-protein interactions: Complementary and competitive effects of tetrapropylammonium, guanidinium, sulfate, and chloride ions
,”
J. Phys. Chem. B
113
,
3227
3234
(
2009
).
14.
E.
Wernersson
,
J.
Heyda
,
M.
Vazdar
,
M.
Lund
,
P. E.
Mason
, and
P.
Jungwirth
, “
Orientational dependence of the affinity of guanidinium ions to the water surface
,”
J. Phys. Chem. B
115
,
12521
12526
(
2011
).
15.
I. V.
Leontyev
and
A. A.
Stuchebrukhov
, “
Electronic continuum model for molecular dynamics simulations of biological molecules
,”
J. Chem. Theory Comput.
6
,
1498
1508
(
2010
).
16.
I.
Leontyev
and
A.
Stuchebrukhov
, “
Accounting for electronic polarization in non-polarizable force fields
,”
Phys. Chem. Chem. Phys.
13
,
2613
2626
(
2011
).
17.
M.
Vazdar
,
P.
Jungwirth
, and
P. E.
Mason
, “
Aqueous guanidinium–carbonate interactions by molecular dynamics and neutron scattering: Relevance to ion–protein interactions
,”
J. Phys. Chem. B
117
,
1844
1848
(
2013
).
18.
M.
Vazdar
,
E.
Pluhařová
,
P. E.
Mason
,
R.
Vácha
, and
P.
Jungwirth
, “
Ions at hydrophobic aqueous interfaces: Molecular dynamics with effective polarization
,”
J. Phys. Chem. Lett.
3
,
2087
2091
(
2012
).
19.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
, “
A smooth particle mesh Ewald method
,”
J. Chem. Phys.
103
,
8577
8593
(
1995
).
20.
J.-P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
, “
Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes
,”
J. Comput. Phys.
23
,
327
341
(
1977
).
21.
D. A.
Case
,
T. A.
Darden
,
T. E.
Cheatham
,
C. L.
Simmerling
,
J.
Wang
,
R. E.
Duke
,
R.
Luo
,
M.
Crowley
,
R. C.
Walker
,
W.
Zhang
,
K. M.
Merz
,
B.
Wang
,
S.
Hayik
,
A.
Roitberg
,
G.
Seabra
,
I.
Kolossváry
,
K. F.
Wong
,
F.
Paesani
,
J.
Vanicek
,
X.
Wu
,
S. R.
Brozell
,
T.
Steinbrecher
,
H.
Gohlke
,
L.
Yang
,
C.
Tan
,
J.
Mongan
,
V.
Hornak
,
G.
Cui
,
D. H.
Mathews
,
M. G.
Seetin
,
C.
Sagui
,
V.
Babin
, and
P. A.
Kollman
,
Amber 11
(
University of California
,
San Francisco
,
2010
).
22.
M.
Bässler
,
J.-O.
Forsell
,
O.
Björneholm
,
R.
Feifel
,
M.
Jurvansuu
,
S.
Aksela
,
S.
Sundin
,
S.
Sorensen
,
R.
Nyholm
,
A.
Ausmees
, and
S.
Svensson
, “
Soft x-ray undulator beam line I411 at MAX-II for gases, liquids and solid samples
,”
J. Electron Spectrosc. Relat. Phenom.
101-103
,
953
957
(
1999
).
23.
M.
Bässler
,
A.
Ausmees
,
M.
Jurvansuu
,
R.
Feifel
,
J.-O.
Forsell
,
P.
de Tarso Fonseca
,
A.
Kivimäki
,
S.
Sundin
,
S.
Sorensen
,
R.
Nyholm
,
O.
Björneholm
,
S.
Aksela
, and
S.
Svensson
, “
Beam line I411 at MAX II–performance and first results
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
469
,
382
393
(
2001
).
24.
H.
Bergersen
,
R. R. T.
Marinho
,
W.
Pokapanich
,
A.
Lindblad
,
O.
Björneholm
,
L. J.
Sæthre
, and
G.
Öhrwall
, “
A photoelectron spectroscopic study of aqueous tetrabutylammonium iodide
,”
J. Phys.: Condens. Matter
19
,
326101
(
2007
).
25.
J.
Cooper
, “
Angular distribution of photoelectrons
,”
J. Chem. Phys.
48
,
942
(
1968
).
26.
S.
Hüfner
,
Photoelectron Spectroscopy
(
Springer-Verlag
,
1995
).
27.
C.
Powell
and
A.
Jablonski
, “
Surface sensitivity of x-ray photoelectron spectroscopy
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
601
,
54
65
(
2009
).
28.
N.
Ottosson
,
M.
Faubel
,
S. E.
Bradforth
,
P.
Jungwirth
, and
B.
Winter
, “
Photoelectron spectroscopy of liquid water and aqueous solution: Electron effective attenuation lengths and emission-angle anisotropy
,”
J. Electron Spectrosc. Relat. Phenom.
177
,
60
70
(
2010
).
29.
B.
Winter
,
R.
Weber
,
W.
Widdra
,
M.
Dittmar
,
M.
Faubel
, and
I. V.
Hertel
, “
Full valence band photoemission from liquid water using EUV synchrotron radiation
,”
J. Phys. Chem. A
108
,
2625
2632
(
2004
).
30.
Spectrum Analysis by Curve Fitting (SPANCF) macro package for Igor Pro by Edwin Kukk (edwin.kukk@utu.fi), University of Turku.”
31.
J.
Werner
,
E.
Wernersson
,
V.
Ekholm
,
N.
Ottosson
,
G.
Öhrwall
,
J.
Heyda
,
I.
Persson
,
J.
Söderström
,
P.
Jungwirth
, and
O.
Björneholm
, “
Surface behavior of hydrated guanidinium and ammonium ions: A comparative study by photoelectron spectroscopy and molecular dynamics
,”
J. Phys. Chem. B
118
,
7119
7127
(
2014
).
32.
S.
Heiles
,
R. J.
Cooper
,
M. J.
DiTucci
, and
E. R.
Williams
, “
Hydration of guanidinium depends on its local environment
,”
Chem. Sci.
6
,
3420
3429
(
2015
).

Supplementary Material

You do not currently have access to this content.