The hydrodynamic flow field generated by self-propelled active particles and swimming microorganisms is strongly altered by the presence of nearby boundaries in a viscous flow. Using a simple model three-linked sphere swimmer, we show that the swimming trajectories near a no-slip wall reveal various scenarios of motion depending on the initial orientation and the distance separating the swimmer from the wall. We find that the swimmer can either be trapped by the wall, completely escape, or perform an oscillatory gliding motion at a constant mean height above the wall. Using a far-field approximation, we find that, at leading order, the wall-induced correction has a source-dipolar or quadrupolar flow structure where the translational and angular velocities of the swimmer decay as inverse third and fourth powers with distance from the wall, respectively. The resulting equations of motion for the trajectories and the relevant order parameters fully characterize the transition between the states and allow for an accurate description of the swimming behavior near a wall. We demonstrate that the transition between the trapping and oscillatory gliding states is first order discontinuous, whereas the transition between the trapping and escaping states is continuous, characterized by non-trivial scaling exponents of the order parameters. In order to model the circular motion of flagellated bacteria near solid interfaces, we further assume that the spheres can undergo rotational motion around the swimming axis. We show that the general three-dimensional motion can be mapped onto a quasi-two-dimensional representational model by an appropriate redefinition of the order parameters governing the transition between the swimming states.

1.
C.
Brennen
and
H.
Winet
, “
Fluid mechanics of propulsion by cilia and flagella
,”
Annu. Rev. Fluid Mech.
9
,
339
398
(
1977
).
2.
E. M.
Purcell
, “
Life at low Reynolds number
,”
Am. J. Phys.
45
,
3
11
(
1977
).
3.
E.
Lauga
and
T. R.
Powers
, “
The hydrodynamics of swimming microorganisms
,”
Rep. Prog. Phys.
72
,
096601
(
2009
).
4.
M. C.
Marchetti
,
J. F.
Joanny
,
S.
Ramaswamy
,
T. B.
Liverpool
,
J.
Prost
,
M.
Rao
, and
R. A.
Simha
, “
Hydrodynamics of soft active matter
,”
Rev. Mod. Phys.
85
,
1143
(
2013
).
5.
J.
Elgeti
,
R. G.
Winkler
, and
G.
Gompper
, “
Physics of microswimmers—single particle motion and collective behavior: A review
,”
Rep. Prog. Phys.
78
,
056601
(
2015
).
6.
C.
Bechinger
,
R.
Di Leonardo
,
H.
Löwen
,
C.
Reichhardt
,
G.
Volpe
, and
G.
Volpe
, “
Active particles in complex and crowded environments
,”
Rev. Mod. Phys.
88
,
045006
(
2016
).
7.
A.
Zöttl
and
H.
Stark
, “
Emergent behavior in active colloids
,”
J. Phys.: Condens. Matter
28
,
253001
(
2016
).
8.
E.
Lauga
, “
Bacterial hydrodynamics
,”
Annu. Rev. Fluid Mech.
48
,
105
130
(
2016
).
9.
A.
Najafi
and
R.
Golestanian
, “
Simple swimmer at low Reynolds number: Three linked spheres
,”
Phys. Rev. E
69
,
062901
(
2004
).
10.
A.
Najafi
and
R.
Golestanian
, “
Propulsion at low Reynolds number
,”
J. Phys.: Condens. Matter
17
,
S1203
(
2005
).
11.
R.
Golestanian
and
A.
Ajdari
, “
Analytic results for the three-sphere swimmer at low Reynolds number
,”
Phys. Rev. E
77
,
036308
(
2008
).
12.
R.
Golestanian
and
A.
Ajdari
, “
Mechanical response of a small swimmer driven by conformational transitions
,”
Phys. Rev. Lett.
100
,
038101
(
2008
).
13.
G. P.
Alexander
,
C. M.
Pooley
, and
J. M.
Yeomans
, “
Hydrodynamics of linked sphere model swimmers
,”
J. Phys.: Condens. Matter
21
,
204108
(
2009
).
14.
M.
Leoni
,
J.
Kotar
,
B.
Bassetti
,
P.
Cicuta
, and
M. C.
Lagomarsino
, “
A basic swimmer at low Reynolds number
,”
Soft Matter
5
,
472
476
(
2009
).
15.
G.
Grosjean
,
M.
Hubert
,
G.
Lagubeau
, and
N.
Vandewalle
, “
Realization of the Najafi-Golestanian microswimmer
,”
Phys. Rev. E
94
,
021101
(
2016
).
16.
A.
Montino
and
A.
DeSimone
, “
Three-sphere low-Reynolds-number swimmer with a passive elastic arm
,”
Eur. Phys. J. E
38
,
42
(
2015
).
17.
A.
Montino
and
A.
DeSimone
, “
Dynamics and optimal actuation of a three-sphere low-Reynolds-number swimmer with muscle-like arms
,”
Acta Appl. Math.
149
,
53
86
(
2017
).
18.
J.
Pande
and
A.-S.
Smith
, “
Forces and shapes as determinants of micro-swimming: Effect on synchronisation and the utilisation of drag
,”
Soft Matter
11
,
2364
2371
(
2015
).
19.
J.
Pande
,
L.
Merchant
,
T.
Krüger
,
J.
Harting
, and
A.-S.
Smith
, “
Effect of body deformability on microswimming
,”
Soft Matter
13
,
3984
3993
(
2017
).
20.
S.
Babel
,
H.
Löwen
, and
A. M.
Menzel
, “
Dynamics of a linear magnetic ‘microswimmer molecule’
,”
Europhys. Lett.
113
,
58003
(
2016
).
21.
R.
Ledesma-Aguilar
,
H.
Löwen
, and
J. M.
Yeomans
, “
A circle swimmer at low Reynolds number
,”
Eur. Phys. J. E
35
,
70
(
2012
).
22.
R.
Dreyfus
,
J.
Baudry
, and
H. A.
Stone
, “
Purcell’s ‘rotator’: Mechanical rotation at low Reynolds number
,”
Eur. Phys. J. B
47
,
161
164
(
2005
).
23.
M. S.
Rizvi
,
A.
Farutin
, and
C.
Misbah
, “
Three-bead steering microswimmers
,”
Phys. Rev. E
97
,
023102
(
2018
).
24.
B. U.
Felderhof
, “
The swimming of animalcules
,”
Phys. Fluids
18
,
063101
(
2006
).
25.
O. S.
Pak
,
L.
Zhu
,
L.
Brandt
, and
E.
Lauga
, “
Micropropulsion and microrheology in complex fluids via symmetry breaking
,”
Phys. Fluids
24
,
103102
(
2012
).
26.
L.
Zhu
,
E.
Lauga
, and
L.
Brandt
, “
Self-propulsion in viscoelastic fluids: Pushers vs. pullers
,”
Phys. Fluids
24
,
051902
(
2012
).
27.
M. P.
Curtis
and
E. A.
Gaffney
, “
Three-sphere swimmer in a nonlinear viscoelastic medium
,”
Phys. Rev. E
87
,
043006
(
2013
).
28.
S.
Yazdi
,
A. M.
Ardekani
, and
A.
Borhan
, “
Locomotion of microorganisms near a no-slip boundary in a viscoelastic fluid
,”
Phys. Rev. E
90
,
043002
(
2014
).
29.
S.
Yazdi
,
A. M.
Ardekani
, and
A.
Borhan
, “
Swimming dynamics near a wall in a weakly elastic fluid
,”
J. Nonlinear Sci.
25
,
1153
1167
(
2015
).
30.
C.
Datt
,
L.
Zhu
,
G. J.
Elfring
, and
O. S.
Pak
, “
Squirming through shear-thinning fluids
,”
J. Fluid Mech.
784
,
R1
(
2015
).
31.
S.
Yazdi
and
A.
Borhan
, “
Effect of a planar interface on time-averaged locomotion of a spherical squirmer in a viscoelastic fluid
,”
Phys. Fluids
29
,
093104
(
2017
).
32.
D.
Pimponi
,
M.
Chinappi
,
P.
Gualtieri
, and
C. M.
Casciola
, “
Hydrodynamics of flagellated microswimmers near free-slip interfaces
,”
J. Fluid Mech.
789
,
514
533
(
2016
).
33.
A.
Domínguez
,
P.
Malgaretti
,
M. N.
Popescu
, and
S.
Dietrich
, “
Effective interaction between active colloids and fluid interfaces induced by Marangoni flows
,”
Phys. Rev. Lett.
116
,
078301
(
2016
).
34.
K.
Dietrich
,
D.
Renggli
,
M.
Zanini
,
G.
Volpe
,
I.
Buttinoni
, and
L.
Isa
, “
Two-dimensional nature of the active Brownian motion of catalytic microswimmers at solid and liquid interfaces
,”
New J. Phys.
19
,
065008
(
2017
).
35.
J.
Elgeti
and
G.
Gompper
, “
Self-propelled rods near surfaces
,”
Europhys. Lett.
85
,
38002
(
2009
).
36.
L.
Zhu
,
E.
Lauga
, and
L.
Brandt
, “
Low-Reynolds-number swimming in a capillary tube
,”
J. Fluid Mech.
726
,
285
311
(
2013
).
37.
F.
Yang
,
S.
Qian
,
Y.
Zhao
, and
R.
Qiao
, “
Self-diffusiophoresis of Janus catalytic micromotors in confined geometries
,”
Langmuir
32
,
5580
5592
(
2016
).
38.
J.
Elgeti
and
G.
Gompper
, “
Microswimmers near surfaces
,”
Eur. Phys. J.: Spec. Top.
225
,
2333
2352
(
2016
).
39.
C.
Liu
,
C.
Zhou
,
W.
Wang
, and
H. P.
Zhang
, “
Bimetallic microswimmers speed up in confining channels
,”
Phys. Rev. Lett.
117
,
198001
(
2016
).
40.
G.-J.
Li
and
A. M.
Ardekani
, “
Hydrodynamic interaction of microswimmers near a wall
,”
Phys. Rev. E
90
,
013010
(
2014
).
41.
G.
Grégoire
and
H.
Chaté
, “
Onset of collective and cohesive motion
,”
Phys. Rev. Lett.
92
,
025702
(
2004
).
42.
S.
Mishra
,
A.
Baskaran
, and
M. C.
Marchetti
, “
Fluctuations and pattern formation in self-propelled particles
,”
Phys. Rev. E
81
,
061916
(
2010
).
43.
S.
Heidenreich
,
S.
Hess
, and
S. H. L.
Klapp
, “
Nonlinear rheology of active particle suspensions: Insights from an analytical approach
,”
Phys. Rev. E
83
,
011907
(
2011
).
44.
A. M.
Menzel
, “
Collective motion of binary self-propelled particle mixtures
,”
Phys. Rev. E
85
,
021912
(
2012
).
45.
B.
Liebchen
,
M. E.
Cates
, and
D.
Marenduzzo
, “
Pattern formation in chemically interacting active rotors with self-propulsion
,”
Soft Matter
12
,
7259
7264
(
2016
).
46.
T.
Le Goff
,
B.
Liebchen
, and
D.
Marenduzzo
, “
Pattern formation in polymerizing actin flocks: Spirals, spots, and waves without nonlinear chemistry
,”
Phys. Rev. Lett.
117
,
238002
(
2016
).
47.
B.
Liebchen
and
D.
Levis
, “
Collective behavior of chiral active matter: Pattern formation and enhanced flocking
,”
Phys. Rev. Lett.
119
,
058002
(
2017
).
48.
B.
Liebchen
,
D.
Marenduzzo
, and
M. E.
Cates
, “
Phoretic interactions generically induce dynamic clusters and wave patterns in active colloids
,”
Phys. Rev. Lett.
118
,
268001
(
2017
).
49.
A. M.
Menzel
, “
Unidirectional laning and migrating cluster crystals in confined self-propelled particle systems
,”
J. Phys.: Condens. Matter
25
,
505103
(
2013
).
50.
F.
Kogler
and
S. H. L.
Klapp
, “
Lane formation in a system of dipolar microswimmers
,”
Europhys. Lett.
110
,
10004
(
2015
).
51.
P.
Romanczuk
,
H.
Chaté
,
L.
Chen
,
S.
Ngo
, and
J.
Toner
, “
Emergent smectic order in simple active particle models
,”
New J. Phys.
18
,
063015
(
2016
).
52.
A. M.
Menzel
,
A.
Saha
,
C.
Hoell
, and
H.
Löwen
, “
Dynamical density functional theory for microswimmers
,”
J. Chem. Phys.
144
,
024115
(
2016
).
53.
J.
Tailleur
and
M. E.
Cates
, “
Statistical mechanics of interacting run-and-tumble bacteria
,”
Phys. Rev. Lett.
100
,
218103
(
2008
).
54.
J.
Palacci
,
S.
Sacanna
,
A. P.
Steinberg
,
D. J.
Pine
, and
P. M.
Chaikin
, “
Living crystals of light-activated colloidal surfers
,”
Science
339
,
936
940
(
2013
).
55.
I.
Buttinoni
,
J.
Bialké
,
F.
Kümmel
,
H.
Löwen
,
C.
Bechinger
, and
T.
Speck
, “
Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles
,”
Phys. Rev. Lett.
110
,
238301
(
2013
).
56.
T.
Speck
,
J.
Bialké
,
A. M.
Menzel
, and
H.
Löwen
, “
Effective Cahn-Hilliard equation for the phase separation of active Brownian particles
,”
Phys. Rev. Lett.
112
,
218304
(
2014
).
57.
T.
Speck
,
A. M.
Menzel
,
J.
Bialké
, and
H.
Löwen
, “
Dynamical mean-field theory and weakly non-linear analysis for the phase separation of active Brownian particles
,”
J. Chem. Phys.
142
,
224109
(
2015
).
58.
H. H.
Wensink
,
J.
Dunkel
,
S.
Heidenreich
,
K.
Drescher
,
R. E.
Goldstein
,
H.
Löwen
, and
J. M.
Yeomans
, “
Meso-scale turbulence in living fluids
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
14308
14313
(
2012
).
59.
H. H.
Wensink
and
H.
Löwen
, “
Emergent states in dense systems of active rods: From swarming to turbulence
,”
J. Phys.: Condens. Matter
24
,
464130
(
2012
).
60.
J.
Dunkel
,
S.
Heidenreich
,
K.
Drescher
,
H. H.
Wensink
,
M.
Bär
, and
R. E.
Goldstein
, “
Fluid dynamics of bacterial turbulence
,”
Phys. Rev. Lett.
110
,
228102
(
2013
).
61.
S.
Heidenreich
,
S. H. L.
Klapp
, and
M.
Bär
, “
Numerical simulations of a minimal model for the fluid dynamics of dense bacterial suspensions
,”
J. Phys.: Conf. Ser.
490
,
012126
(
2014
).
62.
A.
Kaiser
,
A.
Peshkov
,
A.
Sokolov
,
B.
ten Hagen
,
H.
Löwen
, and
I. S.
Aranson
, “
Transport powered by bacterial turbulence
,”
Phys. Rev. Lett.
112
,
158101
(
2014
).
63.
S.
Heidenreich
,
J.
Dunkel
,
S. H. L.
Klapp
, and
M.
Bär
, “
Hydrodynamic length-scale selection in microswimmer suspensions
,”
Phys. Rev. E
94
,
020601
(
2016
).
64.
H.
Löwen
, “
Chirality in microswimmer motion: From circle swimmers to active turbulence
,”
Eur. Phys. J.: Spec. Top.
225
,
2319
2331
(
2016
).
65.
F. G.
Woodhouse
and
R. E.
Goldstein
, “
Spontaneous circulation of confined active suspensions
,”
Phys. Rev. Lett.
109
,
168105
(
2012
).
66.
H.
Wioland
,
F. G.
Woodhouse
,
J.
Dunkel
,
J. O.
Kessler
, and
R. E.
Goldstein
, “
Confinement stabilizes a bacterial suspension into a spiral vortex
,”
Phys. Rev. Lett.
110
,
268102
(
2013
).
67.
H.
Wioland
,
F. G.
Woodhouse
,
J.
Dunkel
, and
R. E.
Goldstein
, “
Ferromagnetic and antiferromagnetic order in bacterial vortex lattices
,”
Nat. Phys.
12
,
341
345
(
2016
).
68.
F. G.
Woodhouse
and
J.
Dunkel
, “
Active matter logic for autonomous microfluidics
,”
Nat. Commun.
8
,
15169
(
2017
).
69.
J.
Happel
and
B. J.
Bryne
, “
Viscous flow in multiparticle systems. Motion of a sphere in a cylindrical tube
,”
Ind. Eng. Chem.
46
,
1181
1186
(
1954
).
70.
H. A.
Stone
,
A. D.
Stroock
, and
A.
Ajdari
, “
Engineering flows in small devices: Microfluidics toward a lab-on-a-chip
,”
Annu. Rev. Fluid Mech.
36
,
381
411
(
2004
).
71.
T.
Squires
and
S.
Quake
, “
Microfluidics: Fluid physics at the nanoliter scale
,”
Rev. Mod. Phys.
77
,
977
(
2005
).
72.
E.
Lauga
,
M.
Brenner
, and
H.
Stone
, “
Microfluidics: The no-slip boundary condition
,” in
Springer handbook of Experimental Fluid Mechanics
(
Springer
,
2007
), pp.
1219
1240
.
73.
M.
Lisicki
,
B.
Cichocki
,
S. A.
Rogers
,
J. K. G.
Dhont
, and
P. R.
Lang
, “
Translational and rotational near-wall diffusion of spherical colloids studied by evanescent wave scattering
,”
Soft Matter
10
,
4312
4323
(
2014
).
74.
M.
Lisicki
,
B.
Cichocki
, and
E.
Wajnryb
, “
Near-wall diffusion tensor of an axisymmetric colloidal particle
,”
J. Chem. Phys.
145
,
034904
(
2016
).
75.
A.
Daddi-Moussa-Ider
and
S.
Gekle
, “
Hydrodynamic interaction between particles near elastic interfaces
,”
J. Chem. Phys.
145
,
014905
(
2016
).
76.
B.
Rallabandi
,
B.
Saintyves
,
T.
Jules
,
T.
Salez
,
C.
Schönecker
,
L.
Mahadevan
, and
H. A.
Stone
, “
Rotation of an immersed cylinder sliding near a thin elastic coating
,”
Phys. Rev. Fluids
2
,
074102
(
2017
).
77.
B.
Rallabandi
,
S.
Hilgenfeldt
, and
H. A.
Stone
, “
Hydrodynamic force on a sphere normal to an obstacle due to a non-uniform flow
,”
J. Fluid Mech.
818
,
407
434
(
2017
).
78.
A.
Daddi-Moussa-Ider
,
M.
Lisicki
, and
S.
Gekle
, “
Mobility of an axisymmetric particle near an elastic interface
,”
J. Fluid Mech.
811
,
210
233
(
2017
).
79.
A.
Daddi-Moussa-Ider
and
S.
Gekle
, “
Hydrodynamic mobility of a solid particle near a spherical elastic membrane: Axisymmetric motion
,”
Phys. Rev. E
95
,
013108
(
2017
).
80.
A.
Daddi-Moussa-Ider
,
M.
Lisicki
, and
S.
Gekle
, “
Hydrodynamic mobility of a solid particle near a spherical elastic membrane. II. Asymmetric motion
,”
Phys. Rev. E
95
,
053117
(
2017
).
81.
A.
Daddi-Moussa-Ider
,
M.
Lisicki
, and
S.
Gekle
, “
Hydrodynamic mobility of a sphere moving on the centerline of an elastic tube
,”
Phys. Fluids
29
,
111901
(
2017
).
82.
P. D.
Frymier
,
R. M.
Ford
,
H. C.
Berg
, and
P. T.
Cummings
, “
Three-dimensional tracking of motile bacteria near a solid planar surface
,”
Proc. Natl. Acad. Sci. U. S. A.
92
,
6195
6199
(
1995
).
83.
W. R.
DiLuzio
,
L.
Turner
,
M.
Mayer
,
P.
Garstecki
,
D. B.
Weibel
,
H. C.
Berg
, and
G. M.
Whitesides
, “
Escherichia coli swim on the right-hand side
,”
Nature
435
,
1271
1274
(
2005
).
84.
A. P.
Berke
,
L.
Turner
,
H. C.
Berg
, and
E.
Lauga
, “
Hydrodynamic attraction of swimming microorganisms by surfaces
,”
Phys. Rev. Lett.
101
,
038102
(
2008
).
85.
K.
Drescher
,
J.
Dunkel
,
L. H.
Cisneros
,
S.
Ganguly
, and
R. E.
Goldstein
, “
Fluid dynamics and noise in bacterial cell–cell and cell–surface scattering
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
10940
10945
(
2011
).
86.
G.
Miño
,
T. E.
Mallouk
,
T.
Darnige
,
M.
Hoyos
,
J.
Dauchet
,
J.
Dunstan
,
R.
Soto
,
Y.
Wang
,
A.
Rousselet
, and
E.
Clement
, “
Enhanced diffusion due to active swimmers at a solid surface
,”
Phys. Rev. Lett.
106
,
048102
(
2011
).
87.
E.
Lushi
,
V.
Kantsler
, and
R. E.
Goldstein
, “
Scattering of biflagellate microswimmers from surfaces
,”
Phys. Rev. E
96
,
023102
(
2017
).
88.
K.
Ishimoto
and
E. A.
Gaffney
, “
Squirmer dynamics near a boundary
,”
Phys. Rev. E
88
,
062702
(
2013
).
89.
M.
Contino
,
E.
Lushi
,
I.
Tuval
,
V.
Kantsler
, and
M.
Polin
, “
Microalgae scatter off solid surfaces by hydrodynamic and contact forces
,”
Phys. Rev. Lett.
115
,
258102
(
2015
).
90.
J.
Dunstan
,
G.
Miño
,
E.
Clement
, and
S.
Soto
, “
A two-sphere model for bacteria swimming near solid surfaces
,”
Phys. Fluids
24
,
011901
(
2012
).
91.
W. E.
Uspal
,
M. N.
Popescu
,
S.
Dietrich
, and
M.
Tasinkevych
, “
Rheotaxis of spherical active particles near a planar wall
,”
Soft Matter
11
,
6613
6632
(
2015
).
92.
W. E.
Uspal
,
M. N.
Popescu
,
S.
Dietrich
, and
M.
Tasinkevych
, “
Self-propulsion of a catalytically active particle near a planar wall: From reflection to sliding and hovering
,”
Soft Matter
11
,
434
438
(
2015
).
93.
J.
Simmchen
,
J.
Katuri
,
W. E.
Uspal
,
M. N.
Popescu
,
M.
Tasinkevych
, and
S.
Sánchez
, “
Topographical pathways guide chemical microswimmers
,”
Nat. Commun.
7
,
10598
(
2016
).
94.
Y.
Ibrahim
and
T. B.
Liverpool
, “
The dynamics of a self-phoretic Janus swimmer near a wall
,”
Europhys. Lett.
111
,
48008
(
2015
).
95.
A.
Mozaffari
,
N.
Sharifi-Mood
,
J.
Koplik
, and
C.
Maldarelli
, “
Self-diffusiophoretic colloidal propulsion near a solid boundary
,”
Phys. Fluids
28
,
053107
(
2016
).
96.
M. N.
Popescu
,
W. E.
Uspal
, and
S.
Dietrich
, “
Self-diffusiophoresis of chemically active colloids
,”
Eur. Phys. J.: Spec. Top.
225
,
2189
2206
(
2016
).
97.
F.
Rühle
,
J.
Blaschke
,
J.-T.
Kuhr
, and
H.
Stark
, “
Gravity-induced dynamics of a squirmer microswimmer in wall proximity
,”
New J. Phys.
20
,
025003
(
2018
).
98.
A.
Mozaffari
,
N.
Sharifi-Mood
,
J.
Koplik
, and
C.
Maldarelli
, “
Self-propelled colloidal particle near a planar wall: A Brownian dynamics study
,”
Phys. Rev. Fluids
3
,
014104
(
2018
).
99.
D.
Crowdy
,
S.
Lee
,
O.
Samson
,
E.
Lauga
, and
A. E.
Hosoi
, “
A two-dimensional model of low-Reynolds number swimming beneath a free surface
,”
J. Fluid Mech.
681
,
24
47
(
2011
).
100.
R.
Di Leonardo
,
D.
Dell’Arciprete
,
L.
Angelani
, and
V.
Iebba
, “
Swimming with an image
,”
Phys. Rev. Lett.
106
,
038101
(
2011
).
101.
D.
Lopez
and
E.
Lauga
, “
Dynamics of swimming bacteria at complex interfaces
,”
Phys. Fluids
26
,
071902
(
2014
).
102.
S.
Das
,
A.
Garg
,
A. I.
Campbell
,
J.
Howse
,
A.
Sen
,
D.
Velegol
,
R.
Golestanian
, and
S. J.
Ebbens
, “
Boundaries can steer active Janus spheres
,”
Nat. Commun.
6
,
8999
(
2015
).
103.
K.
Schaar
,
A.
Zöttl
, and
H.
Stark
, “
Detention times of microswimmers close to surfaces: Influence of hydrodynamic interactions and noise
,”
Phys. Rev. Lett.
115
,
038101
(
2015
).
104.
S. E.
Spagnolie
,
G. R.
Moreno-Flores
,
D.
Bartolo
, and
E.
Lauga
, “
Geometric capture and escape of a microswimmer colliding with an obstacle
,”
Soft Matter
11
,
3396
3411
(
2015
).
105.
N.
Desai
,
V. A.
Shaik
, and
A. M.
Ardekani
, “
Hydrodynamics-mediated trapping of micro-swimmers near drops
,”
Soft Matter
14
,
264
(
2018
).
106.
H.
Shum
and
J. M.
Yeomans
, “
Entrainment and scattering in microswimmer-colloid interactions
,”
Phys. Rev. Fluids
2
,
113101
(
2017
).
107.
M. C.
van Loosdrecht
,
J.
Lyklema
,
W.
Norde
, and
A. J.
Zehnder
, “
Influence of interfaces on microbial activity
,”
Microbiol. Rev.
54
(
1
),
75
87
(
1990
).
108.
K.
Drescher
,
Y.
Shen
,
B. L.
Bassler
, and
H. A.
Stone
, “
Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
4345
4350
(
2013
).
109.
R.
Zargar
,
A.
Najafi
, and
M.
Miri
, “
Three-sphere low-Reynolds-number swimmer near a wall
,”
Phys. Rev. E
80
,
026308
(
2009
).
110.
S.
Kim
and
S. J.
Karrila
,
Microhydrodynamics: Principles and Selected Applications
(
Courier Corporation
,
2013
).
111.
J. R.
Blake
, “
A note on the image system for a stokeslet in a no-slip boundary
,”
Math. Proc. Cambridge Philos. Soc.
70
,
303
310
(
1971
).
112.
J. W.
Swan
and
J. F.
Brady
, “
Simulation of hydrodynamically interacting particles near a no-slip boundary
,”
Phys. Fluids
19
,
113306
(
2007
).
113.
Y.
Su
,
J. W.
Swan
, and
R. N.
Zia
, “
Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Stresslet and straining motion couplings
,”
J. Chem. Phys.
146
,
124903
(
2017
).
114.
A. M.
Fiore
,
F.
Balboa Usabiaga
,
A.
Donev
, and
J. W.
Swan
, “
Rapid sampling of stochastic displacements in Brownian dynamics simulations
,”
J. Chem. Phys.
146
,
124116
(
2017
).
115.
A.
Daddi-Moussa-Ider
,
M.
Lisicki
,
A. J. T. M.
Mathijssen
,
C.
Hoell
,
S.
Goh
,
J.
Bławzdziewicz
,
A. M.
Menzel
, and
H.
Löwen
, “
State diagram of a three-sphere microswimmer in a channel
,” (unpublished); preprint arXiv:1803.02345 [physics.flu-dyn].
116.
T. I.
Fossen
,
Handbook of Marine Craft Hydrodynamics and Motion Control
(
John Wiley & Sons
,
2011
).
117.
W. H.
Press
,
The Art of Scientific Computing
(
Cambridge University Press
,
1992
).
118.
B.
Cichocki
,
R. B.
Jones
,
R.
Kutteh
, and
E.
Wajnryb
, “
Friction and mobility for colloidal spheres in Stokes flow near a boundary: The multipole method and applications
,”
J. Chem. Phys.
112
,
2548
2561
(
2000
).
119.
M.
Kedzierski
and
E.
Wajnryb
, “
Precise multipole method for calculating many-body hydrodynamic interactions in a microchannel
,”
J. Chem. Phys.
133
,
154105
(
2010
).
120.
S. E.
Spagnolie
and
E.
Lauga
, “
Hydrodynamics of self-propulsion near a boundary: Predictions and accuracy of far-field approximations
,”
J. Fluid Mech.
700
,
105
147
(
2012
).
121.
A. J. T. M.
Mathijssen
,
A.
Doostmohammadi
,
J. M.
Yeomans
, and
T. N.
Shendruk
, “
Hotspots of boundary accumulation: Dynamics and statistics of micro-swimmers in flowing films
,”
J. R. Soc. Interface
13
,
20150936
(
2016
).
122.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
Dover New York
,
1972
), Vol. 1.
123.
G.
Lowe
,
M.
Meister
, and
H. C.
Berg
, “
Rapid rotation of flagellar bundles in swimming bacteria
,”
Nature
325
,
637
640
(
1987
).
124.
Y.
Magariyama
,
S.
Sugiyama
, and
S.
Kudo
, “
Bacterial swimming speed and rotation rate of bundled flagella
,”
FEMS Microbiol. Lett.
199
,
125
129
(
2001
).
125.
R. M.
Macnab
, “
Bacterial flagella rotating in bundles: A study in helical geometry
,”
Proc. Nat. Acad. Sci. U. S. A.
74
,
221
225
(
1977
).
126.
E.
Lauga
,
W. R.
DiLuzio
,
G. M.
Whitesides
, and
H. A.
Stone
, “
Swimming in circles: Motion of bacteria near solid boundaries
,”
Biophys. J.
90
,
400
412
(
2006
).
127.
E.
Lauga
and
T. M.
Squires
, “
Brownian motion near a partial-slip boundary: A local probe of the no-slip condition
,”
Phys. Fluids
17
,
103102
(
2005
).

Supplementary Material

You do not currently have access to this content.