We report on a combined experimental and theoretical study of electron-transfer-induced decomposition of adenine (Ad) and a selection of analog molecules in collisions with potassium (K) atoms. Time-of-flight negative ion mass spectra have been obtained in a wide collision energy range (6–68 eV in the centre-of-mass frame), providing a comprehensive investigation of the fragmentation patterns of purine (Pu), adenine (Ad), 9-methyl adenine (9-mAd), 6-dimethyl adenine (6-dimAd), and 2-D adenine (2-DAd). Following our recent communication about selective hydrogen loss from the transient negative ions (TNIs) produced in these collisions [T. Cunha et al., J. Chem. Phys. 148, 021101 (2018)], this work focuses on the production of smaller fragment anions. In the low-energy part of the present range, several dissociation channels that are accessible in free electron attachment experiments are absent from the present mass spectra, notably NH2 loss from adenine and 9-methyl adenine. This can be understood in terms of a relatively long transit time of the K+ cation in the vicinity of the TNI tending to enhance the likelihood of intramolecular electron transfer. In this case, the excess energy can be redistributed through the available degrees of freedom inhibiting fragmentation pathways. Ab initio theoretical calculations were performed for 9-methyl adenine (9-mAd) and adenine (Ad) in the presence of a potassium atom and provided a strong basis for the assignment of the lowest unoccupied molecular orbitals accessed in the collision process.

1.
B.
Boudaiffa
,
P.
Cloutier
,
D.
Hunting
,
M. A.
Huels
, and
L.
Sanche
,
Science
287
,
1658
(
2000
).
2.
I.
Baccarelli
,
I.
Bald
,
F. A.
Gianturco
,
E.
Illenberger
, and
J.
Kopyra
,
Phys. Rep.
508
,
1
(
2011
).
4.
C. R.
Wang
,
J.
Nguyen
, and
Q.
Bin Lu
,
J. Am. Chem. Soc.
131
,
11320
(
2009
).
5.
H.
Abdoul-Carime
,
J.
Langer
,
M. A.
Huels
, and
E.
Illenberger
,
Eur. Phys. J. D
35
,
399
(
2005
).
6.
D.
Huber
,
M.
Beikircher
,
S.
Denifl
,
F.
Zappa
,
S.
Matejcik
,
A.
Bacher
,
V.
Grill
,
T. D.
Märk
, and
P.
Scheier
,
J. Chem. Phys.
125
,
84304
(
2006
).
7.
B. F.
Minaev
,
M. I.
Shafranyosh
,
Y.
Svida
,
M. I.
Sukhoviya
,
I. I.
Shafranyosh
,
G. V.
Baryshnikov
, and
V. A.
Minaeva
,
J. Chem. Phys.
140
,
175101
(
2014
).
8.
C.
Desfrançois
,
H.
Abdoul-Carime
, and
J. P.
Schermann
,
J. Chem. Phys.
104
,
7792
(
1996
).
9.
K.
Aflatooni
,
G. A.
Gallup
, and
P. D.
Burrow
,
J. Phys. Chem. A
102
,
6205
(
1998
).
10.
K.
Aflatooni
,
A. M.
Scheer
, and
P. D.
Burrow
,
J. Chem. Phys.
125
,
054301
(
2006
).
11.
T.
Cunha
,
M.
Mendes
,
F.
Ferreira da Silva
,
S.
Eden
,
G.
García
, and
P.
Limão-Vieira
,
J. Chem. Phys.
148
,
021101
(
2018
).
12.
H.
Abdoul-Carime
,
S.
Gohlke
, and
E.
Illenberger
,
Phys. Rev. Lett.
92
,
168103
(
2004
).
13.
S.
Gohlke
,
H.
Abdoul-Carime
, and
E.
Illenberger
,
Chem. Phys. Lett.
380
,
595
(
2003
).
14.
S.
Denifl
,
P.
Sulzer
,
D.
Huber
,
F.
Zappa
,
M.
Probst
,
T. D.
Märk
,
P.
Scheier
,
N.
Injan
,
J.
Limtrakul
,
R.
Abouaf
, and
H.
Dunet
,
Angew. Chem., Int. Ed.
46
,
5238
(
2007
).
15.
S.
Tonzani
and
C. H.
Greene
,
J. Chem. Phys.
124
,
54312
(
2006
).
16.
M.
Harańczyk
,
M.
Gutowski
,
X.
Li
, and
K. H.
Bowen
,
Proc. Natl. Acad. Sci. U. S. A.
104
,
4804
(
2007
).
17.
C.
Fonseca Guerra
,
F. M.
Bickelhaupt
,
S.
Sana
, and
F.
Wang
,
J. Phys. Chem. A
110
,
4012
(
2006
).
18.
L. M.
Salter
and
G. M.
Chaban
,
J. Phys. Chem. A
106
,
4251
(
2002
).
19.
M. P.
Fulscher
,
L.
Serrano-Andres
, and
B. O.
Roos
,
J. Am. Chem. Soc.
119
,
6168
(
1997
).
20.
A. C.
Borin
,
L.
Serrano-Andres
,
M. P.
Fulscher
, and
B. O.
Roos
,
J. Phys. Chem. A
103
,
1838
(
1999
).
21.
S.
Pilling
,
A. F.
Lago
,
L. H.
Coutinho
,
R. B.
de Castilho
,
G. G. B.
de Souza
, and
A. N.
de Brito
,
Rapid Commun. Mass Spectrom.
21
,
3646
(
2007
).
22.
B.
Barc
,
M.
Ryszka
,
J. C.
Poully
,
E.
Jabbour Al Maalouf
,
Z.
El Otell
,
J.
Tabet
,
R.
Parajuli
,
P. J. M.
Van Der Burgt
,
P.
Limão-Vieira
,
P.
Cahillane
,
M.
Dampc
,
N. J.
Mason
, and
S.
Eden
,
Int. J. Mass Spectrom.
365-366
,
194
(
2014
).
23.
S.
Chakrabarti
and
S. K.
Chakrabarti
,
Astron. Astrophys.
354
,
L6
L8
(
2000
).
24.
R.
Glaser
,
B.
Hodgen
,
D.
Farrelly
, and
E.
McKee
,
Astrobiology
7
,
455
(
2007
).
25.
V. P.
Gupta
,
P.
Tandon
,
P.
Rawat
,
R. N.
Singh
, and
A.
Singh
,
Astron. Astrophys.
528
,
A129
(
2011
).
26.
D.
Almeida
,
F.
Ferreira da Silva
,
G.
García
, and
P.
Limão-Vieira
,
Phys. Rev. Lett.
110
,
023201
(
2013
).
27.
F.
Ferreira da Silva
,
D.
Almeida
,
R.
Antunes
,
G.
Martins
,
Y.
Nunes
,
S.
Eden
,
G.
Garcia
, and
P.
Limão-Vieira
,
Phys. Chem. Chem. Phys.
13
,
21621
(
2011
).
28.
R.
Antunes
,
D.
Almeida
,
G.
Martins
,
N. J.
Mason
,
G.
Garcia
,
M. J. P.
Maneira
,
Y.
Nunes
, and
P.
Limão-Vieira
,
Phys. Chem. Chem. Phys.
12
,
12513
(
2010
).
29.
D.
Almeida
,
M.-C.
Bacchus-Montabonel
,
F.
Ferreira da Silva
,
G.
Garcia
, and
P.
Limão-Vieira
,
J. Phys. Chem. A
118
,
6547
(
2014
).
30.
M. C.
Bacchus-Montabonel
and
Y. S.
Tergiman
,
Comput. Theor. Chem.
990
,
177
(
2012
).
31.
M. C.
Bacchus-Montabonel
and
F.
Calvo
,
Phys. Chem. Chem. Phys.
17
,
9629
(
2015
).
32.
L.
Salem
,
Electrons in Chemical Reactions: First Principles
(
Wiley Interscience
,
New York
,
1982
).
33.
M. C.
Bacchus-Montabonel
,
D.
Talbi
, and
M.
Persico
,
J. Phys. B: At., Mol. Opt. Phys.
33
,
955
(
2000
).
34.
M.
Fuentes-Cabrera
,
B. G.
Sumpter
, and
J. C.
Wells
,
J. Phys. Chem. B
109
,
21135
(
2005
).
35.
M. C.
Bacchus-Montabonel
and
Y. S.
Tergiman
,
Phys. Rev. A
74
,
54702
(
2006
).
36.
M. C.
Bacchus-Montabonel
and
Y. S.
Tergiman
,
Phys. Chem. Chem. Phys.
13
,
9761
(
2011
).
37.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
 et al., molpro, version 2015.1, a package of ab initio programs, 2015, see http://www.molpro.net.
38.
A.
Nicklass
,
M.
Dolg
,
H.
Stoll
, and
H.
Preuss
,
J. Chem. Phys.
102
,
8942
(
1995
).
39.
Y.
Kanazawa
,
M.
Ehara
, and
T.
Sommerfeld
,
J. Phys. Chem. A
120
,
1545
(
2016
).
40.
D.
Almeida
,
D.
Kinzel
,
F.
Ferreira da Silva
,
B.
Puschnigg
,
D.
Gschliesser
,
P.
Scheier
,
S.
Denifl
,
G.
García
,
L.
González
, and
P.
Limão-Vieira
,
Phys. Chem. Chem. Phys.
15
,
11431
(
2013
).
41.
O. V.
Dorofeeva
and
N.
Vogt
,
J. Chem. Eng. Data
54
,
1348
(
2009
).
42.
See http://webbook.nist.gov/chemistry/ for NIST Chemistry WebBook,
2018
.
43.
S.
Harrison
and
J.
Tennyson
,
J. Phys. B: At., Mol. Opt. Phys.
44
,
45206
(
2011
).
44.
K.
Graupner
,
T. L.
Merrigan
,
T. A.
Field
,
T. G. A.
Youngs
, and
P. C.
Marr
,
New J. Phys.
8
,
117
(
2006
).
45.
S. E.
Bradforth
,
E. H.
Kim
,
D. W.
Arnold
, and
D. M.
Neumark
,
J. Chem. Phys.
98
,
800
(
1993
).
46.
D.
Almeida
,
R.
Antunes
,
G.
Martins
,
S.
Eden
,
F.
Ferreira da Silva
,
Y.
Nunes
,
G.
Garcia
, and
P.
Limão-Vieira
,
Phys. Chem. Chem. Phys.
13
,
15657
(
2011
).
47.
F.
Ferreira da Silva
,
C.
Matias
,
D.
Almeida
,
G.
García
,
O.
Ingólfsson
,
H. D.
Flosadóttir
,
B.
Ómarsson
,
S.
Ptasinska
,
B.
Puschnigg
,
P.
Scheier
,
P.
Limão-Vieira
, and
S.
Denifl
,
J. Am. Soc. Mass Spectrom.
24
,
1787
(
2013
).
48.
C. T.
Wickham-Jones
,
K. M.
Ervin
,
G. B.
Ellison
, and
W. C.
Lineberger
,
J. Chem. Phys.
91
,
2762
(
1989
).
You do not currently have access to this content.