By means of the Jastrow correlated antisymmetrized geminal power (JAGP) wave function and quantum Monte Carlo (QMC) methods, we study the ground state properties of the oligoacene series, up to the nonacene. The JAGP is the accurate variational realization of the resonating-valence-bond (RVB) ansatz proposed by Pauling and Wheland to describe aromatic compounds. We show that the long-ranged RVB correlations built in the acenes’ ground state are detrimental for the occurrence of open-shell diradical or polyradical instabilities, previously found by lower-level theories. We substantiate our outcome by a direct comparison with another wave function, tailored to be an open-shell singlet (OSS) for long-enough acenes. By comparing on the same footing the RVB and OSS wave functions, both optimized at a variational QMC level and further projected by the lattice regularized diffusion Monte Carlo method, we prove that the RVB wave function has always a lower variational energy and better nodes than the OSS, for all molecular species considered in this work. The entangled multi-reference RVB state acts against the electron edge localization implied by the OSS wave function and weakens the diradical tendency for higher oligoacenes. These properties are reflected by several descriptors, including wave function parameters, bond length alternation, aromatic indices, and spin-spin correlation functions. In this context, we propose a new aromatic index estimator suitable for geminal wave functions. For the largest acenes taken into account, the long-range decay of the charge-charge correlation functions is compatible with a quasi-metallic behavior.

1.
K.
Nakada
,
M.
Fujita
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
,
Phys. Rev. B
54
,
17954
(
1996
).
2.
Y.-W.
Son
,
M. L.
Cohen
, and
S. G.
Louie
,
Nature
444
,
347
(
2006
).
3.
T.
Wassmann
,
A. P.
Seitsonen
,
A. M.
Saitta
,
M.
Lazzeri
, and
F.
Mauri
,
Phys. Rev. Lett.
101
,
096402
(
2008
).
4.
R.
Dorel
and
A. M.
Echavarren
,
Eur. J. Org. Chem.
2017
,
14
.
5.
P.
Ruffieux
,
S.
Wang
,
B.
Yang
,
C.
Sánchez-Sánchez
,
J.
Liu
,
T.
Dienel
,
L.
Talirz
,
P.
Shinde
,
C. A.
Pignedoli
,
D.
Passerone
 et al,
Nature
531
,
489
(
2016
).
6.
S. S.
Zade
and
M.
Bendikov
,
Angew. Chem., Int. Ed.
49
,
4012
(
2010
).
7.
C.
Tönshoff
and
H. F.
Bettinger
,
Angew. Chem., Int. Ed.
49
,
4125
(
2010
).
8.
R.
Mondal
,
C.
Tönshoff
,
D.
Khon
,
D. C.
Neckers
, and
H. F.
Bettinger
,
J. Am. Chem. Soc.
131
,
14281
(
2009
).
9.
J.
Hachmann
,
J. J.
Dorando
,
M.
Avilés
, and
G. K.-L.
Chan
,
J. Chem. Phys.
127
,
134309
(
2007
).
10.
B.
Hajgató
,
D.
Szieberth
,
P.
Geerlings
,
F.
De Proft
, and
M.
Deleuze
,
J. Chem. Phys.
131
,
224321
(
2009
).
11.
F.
Plasser
,
H.
Pašalić
,
M. H.
Gerzabek
,
F.
Libisch
,
R.
Reiter
,
J.
Burgdörfer
,
T.
Müller
,
R.
Shepard
, and
H.
Lischka
,
Angew. Chem., Int. Ed.
52
,
2581
(
2013
).
12.
P.
Rivero
,
C. A.
Jiménez-Hoyos
, and
G. E.
Scuseria
,
J. Phys. Chem. B
117
,
12750
(
2013
).
13.
C. U.
Ibeji
and
D.
Ghosh
,
Phys. Chem. Chem. Phys.
17
,
9849
(
2015
).
14.
Y.
Yang
,
E. R.
Davidson
, and
W.
Yang
,
Proc. Natl. Acad. Sci. U. S. A.
113
,
E5098
(
2016
).
15.
J.
Fosso-Tande
,
T.-S.
Nguyen
,
G.
Gidofalvi
, and
A. E.
DePrince
 III
,
J. Chem. Theory Comput.
12
,
2260
(
2016
).
16.
S.
Battaglia
,
N.
Faginas-Lago
,
D.
Andrae
,
S.
Evangelisti
, and
T.
Leininger
,
J. Phys. Chem. A
121
,
3746
(
2017
).
17.
J.
Lee
,
D. W.
Small
,
E.
Epifanovsky
, and
M.
Head-Gordon
,
J. Chem. Theory Comput.
13
,
602
(
2017
).
18.
E.
Clar
,
Polycyclic Hydrocarbons
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
1964
).
19.
A.
Misra
,
D. J.
Klein
, and
T.
Morikawa
,
J. Phys. Chem. A
113
,
1151
(
2009
).
20.
M.
Bendikov
,
F.
Wudl
, and
D. F.
Perepichka
,
Chem. Rev.
104
,
4891
(
2004
).
21.
J. E.
Anthony
,
Angew. Chem., Int. Ed.
47
,
452
(
2008
).
22.
Q.
Ye
and
C.
Chi
,
Chem. Mater.
26
,
4046
(
2014
).
23.
R.
Pilevarshahri
,
I.
Rungger
,
T.
Archer
,
S.
Sanvito
, and
N.
Shahtahmassebi
,
Phys. Rev. B
84
,
174437
(
2011
).
24.
B. E.
Hardin
,
H. J.
Snaith
, and
M. D.
McGehee
,
Nat. Photonics
6
,
162
(
2012
).
25.
T.
Yelin
,
R.
Korytar
,
N.
Sukenik
,
R.
Vardimon
,
B.
Kumar
,
C.
Nuckolls
,
F.
Evers
, and
O.
Tal
,
Nat. Mater.
15
,
444
(
2016
).
26.
P. M.
Zimmerman
,
Z.
Zhang
, and
C. B.
Musgrave
,
Nat. Chem.
2
,
648
(
2010
).
27.
P. M.
Zimmerman
,
F.
Bell
,
D.
Casanova
, and
M.
Head-Gordon
,
J. Am. Chem. Soc.
133
,
19944
(
2011
).
28.
H.
Angliker
,
E.
Rommel
, and
J.
Wirz
,
Chem. Phys. Lett.
87
,
208
(
1982
).
29.
K. N.
Houk
,
P. S.
Lee
, and
M.
Nendel
,
J. Org. Chem.
66
,
5517
(
2001
).
30.
M.
Bendikov
,
H. M.
Duong
,
K.
Starkey
,
K.
Houk
,
E. A.
Carter
, and
F.
Wudl
,
J. Am. Chem. Soc.
126
,
7416
(
2004
).
31.
S. S.
Zade
and
M.
Bendikov
,
J. Phys. Org. Chem.
25
,
452
(
2012
).
32.
D.-e.
Jiang
and
S.
Dai
,
J. Phys. Chem. A
112
,
332
(
2008
).
33.
D. H.
Ess
,
E. R.
Johnson
,
X.
Hu
, and
W.
Yang
,
J. Phys. Chem. A
115
,
76
(
2010
).
34.
B.
Hajgató
,
M.
Huzak
, and
M. S.
Deleuze
,
J. Phys. Chem. A
115
,
9282
(
2011
).
35.
J.-D.
Chai
,
J. Chem. Phys.
146
,
044102
(
2017
).
36.
B.
Purushothaman
,
M.
Bruzek
,
S. R.
Parkin
,
A.-F.
Miller
, and
J. E.
Anthony
,
Angew. Chem.
123
,
7151
(
2011
).
37.
R.
Zuzak
,
R.
Dorel
,
M.
Krawiec
,
B.
Such
,
M.
Kolmer
,
M.
Szymonski
,
A. M.
Echavarren
, and
S.
Godlewski
,
ACS Nano
11
,
9321
(
2017
).
38.
M.
Casula
and
S.
Sorella
,
J. Chem. Phys.
119
,
6500
(
2003
).
39.
M.
Casula
,
C.
Attaccalite
, and
S.
Sorella
,
J. Chem. Phys.
121
,
7110
(
2004
).
40.
M.
Burkatzki
,
C.
Filippi
, and
M.
Dolg
,
J. Chem. Phys.
126
,
234105
(
2007
).
41.
C.
Filippi
, private communication (
2013
).
42.
T.
Kato
,
Commun. Pure Appl. Math.
10
,
151
(
1957
).
43.
A.
Hurley
,
J.
Lennard-Jones
, and
J. A.
Pople
,
Proc. R. Soc. A
220
,
446
455
(
1953
).
44.
S.
Bratož
and
P.
Durand
,
J. Chem. Phys.
43
,
2670
(
1965
).
45.
G.
Bessis
,
C.
Murez
, and
S.
Bratož
,
Int. J. Quantum Chem.
1
,
327
(
1967
).
46.
O.
Goscinski
,
Int. J. Quantum Chem.
22
,
591
(
1982
).
47.
F. R.
Petruzielo
,
J.
Toulouse
, and
C.
Umrigar
,
J. Chem. Phys.
132
,
094109
(
2010
).
48.
M.
Marchi
,
S.
Azadi
,
M.
Casula
, and
S.
Sorella
,
J. Chem. Phys.
131
,
154116
(
2009
).
49.
N.
Dupuy
,
S.
Bouaouli
,
F.
Mauri
,
S.
Sorella
, and
M.
Casula
,
J. Chem. Phys.
142
,
214109
(
2015
).
50.
A.
Coleman
,
J. Math. Phys.
6
,
1425
(
1965
).
51.
T.
Hashimoto
,
H.
Nakano
, and
K.
Hirao
,
J. Chem. Phys.
104
,
6244
(
1996
).
52.
A.
Zen
,
E.
Coccia
,
Y.
Luo
,
S.
Sorella
, and
L.
Guidoni
,
J. Chem. Theory Comput.
10
,
1048
(
2014
).
53.
S.
Sorella
, TurboRVB, Quantum Monte Carlo software for electronic structure calculations, http://people.sissa.it/∼sorella/web/.
54.
C. J.
Umrigar
,
J.
Toulouse
,
C.
Filippi
,
S.
Sorella
, and
R. G.
Hennig
,
Phys. Rev. Lett.
98
,
110201
(
2007
).
55.
S.
Sorella
,
M.
Casula
, and
D.
Rocca
,
J. Chem. Phys.
127
,
014105
(
2007
).
56.
M.
Casula
,
C.
Filippi
, and
S.
Sorella
,
Phys. Rev. Lett.
95
,
100201
(
2005
).
57.
M.
Casula
,
S.
Moroni
,
S.
Sorella
, and
C.
Filippi
,
J. Chem. Phys.
132
,
154113
(
2010
).
58.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
59.
M.
Barborini
,
S.
Sorella
, and
L.
Guidoni
,
J. Chem. Theory Comput.
8
,
1260
(
2012
).
60.
H. F.
Bettinger
,
Pure Appl. Chem.
82
,
905
(
2010
).
61.
M.
Baldo
,
G.
Piccitto
,
R.
Pucci
, and
P.
Tomasello
,
Phys. Lett. A
95
,
201
(
1983
).
62.
D.
Dehareng
and
G.
Dive
,
J. Comput. Chem.
21
,
483
(
2000
).
63.
J.-D.
Chai
,
J. Chem. Phys.
136
,
154104
(
2012
).
64.
J.-D.
Chai
,
J. Chem. Phys.
140
,
18A521
(
2014
).
65.
C.-S.
Wu
,
P.-Y.
Lee
, and
J.-D.
Chai
,
Sci. Rep.
6
,
37249
(
2016
).
66.
H.
Chakraborty
and
A.
Shukla
,
J. Phys. Chem. A
117
,
14220
(
2013
).
67.
W.
Mizukami
,
Y.
Kurashige
, and
T.
Yanai
,
J. Chem. Theory Comput.
9
,
401
(
2012
).
68.
D.
Bhattacharya
,
A.
Panda
,
A.
Misra
, and
D. J.
Klein
,
J. Phys. Chem. A
118
,
4325
(
2014
).
69.
L.
Pauling
and
G. W.
Wheland
,
J. Chem. Phys.
1
,
362
(
1933
).
70.
W.
Wu
,
P.
Su
,
S.
Shaik
, and
P. C.
Hiberty
,
Chem. Rev.
111
,
7557
(
2011
).
71.
K.
Pelzer
,
L.
Greenman
,
G.
Gidofalvi
, and
D. A.
Mazziotti
,
J. Phys. Chem. A
115
,
5632
(
2011
).
72.
J. B.
Schriber
and
F. A.
Evangelista
,
J. Chem. Phys.
144
,
161106
(
2016
).
73.
S.
Kivelson
and
O. L.
Chapman
,
Phys. Rev. B
28
,
7236
(
1983
).
74.
Z.
Qu
,
D.
Zhang
,
C.
Liu
, and
Y.
Jiang
,
J. Phys. Chem. A
113
,
7909
(
2009
).
75.
J.
Kruszewski
and
T.
Krygowski
,
Tetrahedron Lett.
13
,
3839
(
1972
).
76.
T. M.
Krygowski
,
J. Chem. Inf. Comput. Sci.
33
,
70
(
1993
).
77.
J.
Poater
,
X.
Fradera
,
M.
Duran
, and
M.
Sola
,
Chem. - Eur. J.
9
,
400
(
2003
).
78.
A. T.
Balaban
and
M.
Randić
,
J. Math. Chem.
37
,
443
(
2005
).
79.
P. W.
Fowler
and
W.
Myrvold
,
J. Phys. Chem. A
115
,
13191
(
2011
).
80.
S.
Radenković
,
M.
Antić
,
S.
ÐorÐević
, and
B.
Braïda
,
Comput. Theor. Chem.
1116
,
163
(
2017
), understanding Chemistry and Biochemistry Using Computational Valence Bond Theory.
81.
S.
Sorella
,
N.
Devaux
,
M.
Dagrada
,
G.
Mazzola
, and
M.
Casula
,
J. Chem. Phys.
143
,
244112
(
2015
).
82.
E.
Neuscamman
,
Phys. Rev. Lett.
109
,
203001
(
2012
).
83.
E.
Neuscamman
,
Mol. Phys.
114
,
577
(
2016
).
84.
B. V. D.
Goetz
and
E.
Neuscamman
,
J. Chem. Theory Comput.
13
,
2035
(
2017
).
85.
W.
Kohn
,
Phys. Rev.
133
,
A171
(
1964
).
86.
A.
Gallo-Bueno
,
E.
Francisco
, and
A. M.
Pendás
,
Phys. Chem. Chem. Phys.
18
,
11772
(
2016
).
87.
S.
Goedecker
,
Phys. Rev. B
58
,
3501
(
1998
).
88.
M.
Capello
,
F.
Becca
,
M.
Fabrizio
, and
S.
Sorella
,
Phys. Rev. Lett.
99
,
056402
(
2007
).
89.
M.
Capello
,
F.
Becca
,
M.
Fabrizio
, and
S.
Sorella
,
Phys. Rev. B
77
,
144517
(
2008
).
90.
M.
Capello
,
F.
Becca
,
M.
Fabrizio
,
S.
Sorella
, and
E.
Tosatti
,
Phys. Rev. Lett.
94
,
026406
(
2005
).
91.
M.
Casula
,
S.
Sorella
, and
G.
Senatore
,
Phys. Rev. B
74
,
245427
(
2006
).
92.
N. D.
Mermin
and
H.
Wagner
,
Phys. Rev. Lett.
17
,
1133
(
1966
).
93.
O. V.
Yazyev
and
M.
Katsnelson
,
Phys. Rev. Lett.
100
,
047209
(
2008
).
94.
M.
Huzak
,
M. S.
Deleuze
, and
B.
Hajgato
,
J. Chem. Phys.
135
,
104704
(
2011
).
95.
M. S.
Deleuze
,
M.
Huzak
, and
B.
Hajgató
,
J. Mol. Model.
19
,
2699
(
2013
).
96.
S.
Perumal
,
B.
Minaev
, and
H.
Ågren
,
J. Chem. Phys.
136
,
104702
(
2012
).
You do not currently have access to this content.