In our study, we extend the committor concept on multi-minima systems, where more than one reaction may proceed, but the feasible data evaluation needs the projection onto partial reactions. The elementary reaction committor and the corresponding probability density of the reactive trajectories are defined and calculated on a three-hole two-dimensional model system explored by single-particle Langevin dynamics. We propose a method to visualize more elementary reaction committor functions or probability densities of reactive trajectories on a single plot that helps to identify the most important reaction channels and the nonreactive domains simultaneously. We suggest a weighting for the energy-committor plots that correctly shows the limits of both the minimal energy path and the average energy concepts. The methods also performed well on the analysis of molecular dynamics trajectories of 2-chlorobutane, where an elementary reaction committor, the probability densities, the potential energy/committor, and the free-energy/committor curves are presented.

1.
C.
Dellago
,
P. G.
Bolhuis
, and
D.
Chandler
,
J. Chem. Phys.
108
,
9236
(
1998
).
2.
R. W.
Zwanzig
,
J. Chem. Phys.
22
,
1420
(
1954
).
3.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Academic
,
London
,
1996
).
4.
G. M.
Torrie
and
J. P.
Valleau
,
Chem. Phys. Lett.
28
,
578
(
1974
).
5.
A.
Laio
and
M.
Parrinello
,
Proc. Natl. Acad. Sci. U. S. A.
99
,
12562
(
2002
).
6.
E.
Darve
and
A.
Pohorille
,
J. Chem. Phys.
115
,
9169
(
2001
).
7.
C.
Dellago
and
P. G.
Bolhuis
, in
Advanced Computer Simulation Approaches for Soft Matter Sciences. III
, edited by
C.
Holm
and
K.
Kremer
(
Springer
,
Heidelberg
,
2009
), pp.
167
233
.
8.
B.
Peters
,
Reaction Rate Theory and Rare Events
(
Elsevier
,
Amsterdam
,
2017
).
9.
L.
Onsager
,
Phys. Rev
54
,
554
(
1938
).
10.
P. G.
Bolhuis
and
W.
Lechner
,
J. Stat. Phys.
145
,
841
(
2011
).
11.
T. S.
van Erp
,
D.
Moroni
, and
P. G.
Bolhuis
,
J. Chem. Phys.
118
,
7762
(
2003
).
12.
A.
Ma
and
A. R.
Dinner
,
J. Phys. Chem. B
109
,
6769
(
2005
).
13.
E.
Weinan
,
W.
Ren
, and
E.
Vanden-Eijnden
,
Chem. Phys. Lett.
413
,
242
(
2005
).
14.
R. B.
Best
and
G.
Hummer
,
Proc. Natl. Acad. Sci. U. S. A.
102
,
6732
(
2005
).
15.
J.
Daru
, “
Theoretical investigation of reaction mechanisms—From methodological development to applications
,” Ph.D. thesis,
Eötvös Loránd University
,
Budapest
,
2015
.
16.
P. T.
Kiss
and
A.
Baranyai
,
J. Chem. Phys.
131
,
204310
(
2009
).
17.
P.
Metzner
,
C.
Schütte
, and
E.
Vanden-Eijnden
,
J. Chem. Phys.
125
,
084110
(
2006
).
18.
P.
Metzner
,
C.
Schütte
, and
E.
Vanden-Eijnden
,
Multiscale Model. Simul.
7
,
1192
1219
(
2009
).
19.
E.
Vanden-Eijnden
, in
Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology
, edited by
M.
Ferrario
,
G.
Cicotti
, and
K.
Binder
(
Springer
,
Berlin, Heidelberg
,
2006
), pp.
453
493
.
20.
M.
Lapelosa
and
C. F.
Abrams
,
Comput. Phys. Commun.
184
,
2310
(
2013
).
21.
J. H.
Prinz
,
H.
Wu
,
M.
Sarich
,
B.
Keller
,
M.
Senne
,
M.
Held
,
J. D.
Chodera
,
C.
Schütte
, and
F.
Noé
,
J. Chem. Phys.
134
,
174105
(
2011
).
22.
H.
Wu
,
F.
Paula
,
C.
Wehmeyer
, and
F.
Noé
,
Proc. Natl. Acad. Sci. U. S. A.
113
,
E3221
E3230
(
2016
).
23.
B. E.
Husic
and
V. S.
Pande
,
J. Am. Chem. Soc.
140
,
2386
2396
(
2018
).
24.
N.
Deng
,
W.
Zheng
,
E.
Gallicchio
, and
R. M.
Levy
,
J. Am. Chem. Soc.
133
,
9387
9394
(
2011
).
25.
Y.
Meng
,
D.
Shukla
,
V. S.
Pande
, and
B.
Roux
,
Proc. Natl. Acad. Sci. U. S. A.
113
,
9193
9198
(
2016
).
26.
M.
Senne
,
B.
Trendelkamp-Schroer
,
A. S. J. S.
Mey
,
C.
Schütte
, and
F.
Noé
,
J. Chem. Theory Comput.
8
(
7
),
2223
(
2012
).
27.
R.
Elber
,
J. M.
Bello-Rivas
,
P.
Ma
,
A. E.
Cardenas
, and
A.
Fathizadeh
,
Entropy
19
,
219
(
2017
).
28.
G.
Bussi
and
M.
Parrinello
,
Phys. Rev. E
75
,
056707
(
2007
).
29.
M.
Bonomi
,
D.
Branduardi
,
G.
Bussi
,
C.
Camilloni
,
D.
Provasi
,
P.
Raiteri
,
D.
Donadio
,
F.
Marinelli
,
F.
Pietrucci
,
R. A.
Broglia
, and
M.
Parrinello
,
Comput. Phys. Commun.
180
,
1961
(
2009
).
30.
G. A.
Tribello
,
M.
Bonomi
,
D.
Branduardi
,
C.
Camilloni
, and
G.
Bussi
,
Comput. Phys. Commun.
185
,
604
(
2014
).
31.
See http://www.plumed.org for Plumed, accessed January to December 2016.
32.
T.
Ukaji
and
R. A.
Bonham
,
J. Am. Chem. Soc.
84
,
3627
(
1962
).
33.
T.
Ukaji
and
R. A.
Bonham
,
J. Am. Chem. Soc.
84
,
3631
(
1962
).
34.
W. O.
George
,
J. E.
Goodfield
, and
W. F.
Maddam
,
Spectrochim. Acta, Part A
41
,
1243
(
1985
).
35.
H.
Nomura
,
Y.
Udagawa
, and
K.
Murasawa
,
J. Mol. Struct.
126
,
229
(
1985
).
36.
C. A.
Kingsbury
and
K.-H.
Lee
,
J. Phys. Org. Chem.
13
,
244
(
2000
).
37.
K.
Aarset
,
K.
Hagen
, and
R.
Stolevik
,
J. Mol. Struct.
567-568
,
157
(
2001
).
38.
X.
Zhu
,
W. A.
Herrebout
,
B. J.
van der Veken
,
S.
Shen
, and
J. R.
Durig
,
J. Mol. Struct.
688
,
41
(
2004
).
39.
K. B.
Wiberg
and
Y.-G.
Wang
,
J. Comput. Chem.
25
,
1127
(
2004
).
40.
D. E. Shaw Research
,
Schrödinger Release 2016-4: Desmond Molecular Dynamics System
(
D. E. Shaw Research
,
New York, NY
,
2017
);
Maestro-Desmond Interoperability Tools
(
Schrödinger
,
New York, NY
,
2016
).
41.
E.
Harder
,
W.
Damm
,
J.
Maple
,
C.
Wu
,
M.
Reboul
,
J. Y.
Xiang
,
L.
Wang
,
D.
Lupyan
,
M. K.
Dahlgren
,
J. L.
Knight
,
J. W.
Kaus
,
D.
Cerutti
,
G.
Krilov
,
W. L.
Jorgensen
,
R.
Abel
, and
R. A.
Friesner
,
J. Chem. Theory Comput.
12
,
281
(
2016
).
42.
G.
Tóth
,
P.
Király
, and
D. J.
Kiss
,
Chemom. Intell. Lab. Syst.
168
,
10
14
(
2017
).
You do not currently have access to this content.