A detailed characterisation of the luminescence recorded for the 6p 1P1–6s 1S0 transition of atomic barium isolated in annealed solid xenon has been undertaken using two-dimensional excitation–emission (2D-EE) spectroscopy. In the excitation spectra extracted from the 2D-EE scans, two dominant thermally stable sites were identified, consisting of a classic, three-fold split Jahn-Teller band, labeled the blue site, and an unusual asymmetric 2 + 1 split band, the violet site. A much weaker band has also been identified, whose emission is strongly overlapped by the violet site. The temperature dependence of the luminescence for these sites was monitored revealing that the blue site has a non-radiative channel competing effectively with the fluorescence even at 9.8 K. By contrast, the fluorescence decay time of the violet site was recorded to be 4.3 ns and independent of temperature up to 24 K. The nature of the dominant thermally stable trapping sites was investigated theoretically with Diatomics-in-Molecule (DIM) molecular dynamics simulations. The DIM model was parameterized with ab initio multi-reference configuration interaction calculations for the lowest energy excited states of the Ba⋅Xe pair. The simulated absorption spectra are compared with the experimental results obtained from site-resolved excitation spectroscopy. The simulations allow us to assign the experimental blue feature spectrum to a tetra-vacancy trapping site in the bulk xenon fcc crystal—a site often observed when trapping other metal atoms in rare gas matrices. By contrast, the violet site is assigned to a specific 5-atom vacancy trapping site located at a grain boundary.

1.
B.
Mong
 et al (
nEXO Collaboration
),
Phys. Rev. A
91
,
022505
(
2015
).
2.
B. M.
Davis
and
J. G.
McCaffrey
,
J. Chem. Phys.
144
,
044308
(
2016
).
3.
J.
Visticot
,
P.
de Pujo
,
J.
Mestdagh
,
A.
Lallement
,
J.
Berlande
,
O.
Sublemontier
,
P.
Meynadier
, and
J.
Cuvellier
,
J. Chem. Phys.
100
,
158
(
1994
).
4.
Y.
Sonnenblick
,
Z. H.
Kalman
, and
I. T.
Steinberger
,
J. Cryst. Growth
58
,
143
(
1982
).
5.
E.
Knözinger
,
E.
Babka
, and
D.
Hallamasek
,
J. Phys. Chem. A
105
,
8176
(
2001
).
6.
A.
Schrimpf
,
G.
Sulzer
,
H.-J.
Stöckmann
, and
H.
Ackermann
,
Z. Phys. B: Condens. Matter
67
,
531
(
1987
).
7.
E.
Jacquet
,
D.
Zanuttini
,
J.
Douady
,
E.
Giglio
, and
B.
Gervais
,
J. Chem. Phys.
135
,
174503
(
2011
).
8.
R.
Bullough
,
H. R.
Glyde
, and
J. A.
Venables
,
Phys. Rev. Lett.
17
,
249
(
1966
).
9.
J. A.
Venables
,
C. A.
English
,
K. F.
Niebel
, and
G. J.
Tatlock
,
J. Phys. Colloq.
35
,
C7-113
(
1974
).
10.
L. H.
Jones
,
B. I.
Swanson
, and
S. A.
Ekberg
,
J. Chem. Phys.
81
,
5268
(
1984
).
11.
J.
Friedel
,
R.
Smoluchowski
, and
N.
Kurti
, “
Chapter 6. Imperfect dislocations
,” in
Dislocations: International Series of Monographs on Solid State Physics
(
Elsevier Science
,
2013
), ISBN: 9781483135922.
12.
Y.
Adda
,
J. M.
Dupouy
, and
J.
Philibert
,
Eléments de Métallurgie Physique: 3 Alliages et Défauts
(
CEA
,
1977
), Chap. 22, ISBN: 2-7272-0014-5.
13.
B.
Hammer
,
K. W.
Jacobsen
,
V.
Milman
, and
M. C.
Payne
,
J. Phys.: Condens. Matter
4
,
10453
(
1992
).
14.
M.
Ryan
,
M.
Collier
,
P.
dePujo
,
C.
Crépin
, and
J. G.
McCaffrey
,
J. Phys. Chem. A
114
,
3011
(
2010
).
15.
A.
Masson
,
M. C.
Heitz
,
J. M.
Mestdagh
,
M. A.
Gaveau
,
L.
Poisson
, and
F.
Spiegelman
,
Phys. Rev. Lett.
113
,
123005
(
2014
).
16.
J. A.
Boatz
and
M. E.
Fajardo
,
J. Chem. Phys.
101
,
3472
(
1994
).
17.
A. I.
Krylov
,
R. B.
Gerber
, and
R. D.
Coalson
,
J. Chem. Phys.
105
,
4626
(
1996
).
18.
M.-C.
Heitz
,
L.
Teixidor
,
N.-T.
Van-Oanh
, and
F.
Spiegelman
,
J. Phys. Chem. A
114
,
3287
(
2010
).
19.
A. I.
Krylov
,
R. B.
Gerber
,
M. A.
Gaveau
,
J. M.
Mestdagh
,
B.
Schilling
, and
J. P.
Visticot
,
J. Chem. Phys.
104
,
3651
(
1996
).
20.
L.
Balling
and
J.
Wright
,
J. Chem. Phys.
79
,
2941
(
1983
).
21.
B. O.
Roos
,
V.
Veryazov
, and
P.-O.
Widmark
,
Theor. Chem. Acc.
111
,
345
(
2004
).
22.
B. O.
Roos
,
R.
Lindh
,
P.-Å.
Malmqvist
,
V.
Veryazov
, and
P.-O.
Widmark
,
J. Phys. Chem. A
108
,
2851
(
2004
).
23.
F.
Aquilante
 et al,
J. Comput. Chem.
31
,
224
(
2010
).
24.
K.
Abdessalem
,
L.
Mejrissi
,
N.
Issaoui
,
B.
Oujia
, and
F. X.
Gadea
,
J. Phys. Chem. A
117
,
8925
(
2013
).
25.
E.
Czuchaj
,
F.
Rebentrost
,
H.
Stoll
, and
H.
Preuss
,
Theor. Chem. Acc.
100
,
117
(
1998
).
26.
J.
Rose
,
D.
Smith
,
B. E.
Williamson
,
P. N.
Schatz
, and
M. C. M.
O’Brien
,
J. Phys. Chem.
90
,
2608
(
1986
).
27.
M. A.
Collier
and
J. G.
McCaffrey
,
J. Chem. Phys.
122
,
054503
(
2005
).
28.
O.
Byrne
and
J. G.
McCaffrey
,
J. Chem. Phys.
134
,
124501
(
2011
).
29.
B. M.
Davis
, Ph.D. dissertation (
Maynooth University
,
2016
).
30.
W. H.
Breckenridge
and
C. N.
Merrow
,
J. Chem. Phys.
88
,
2329
(
1988
).
31.
R.
Pou-Amérigo
,
M.
Merchán
,
I.
Nebot-Gil
,
P. O.
Widmark
, and
B. O.
Roos
,
Theor. Chim. Acta
92
,
149
(
1995
).
32.
A.
Kramida
,
Y.
Ralchenko
,
J.
Reader
, and
NIST ASD Team
, NIST Atomic Spectra Database (version 5.3), available at: http://physics.nist.gov/asd,
National Institute of Standards and Technology
,
Gaithersburg, MD
, 20 July 2017.

Supplementary Material

You do not currently have access to this content.