Large deviation functions contain information on the stability and response of systems driven into nonequilibrium steady states and in such a way are similar to free energies for systems at equilibrium. As with equilibrium free energies, evaluating large deviation functions numerically for all but the simplest systems is difficult because by construction they depend on exponentially rare events. In this first paper of a series, we evaluate different trajectory-based sampling methods capable of computing large deviation functions of time integrated observables within nonequilibrium steady states. We illustrate some convergence criteria and best practices using a number of different models, including a biased Brownian walker, a driven lattice gas, and a model of self-assembly. We show how two popular methods for sampling trajectory ensembles, transition path sampling and diffusion Monte Carlo, suffer from exponentially diverging correlations in trajectory space as a function of the bias parameter when estimating large deviation functions. Improving the efficiencies of these algorithms requires introducing guiding functions for the trajectories.

1.
G.
Torrie
and
J.
Valleau
, “
Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling
,”
J. Comput. Phys.
23
,
187
199
(
1977
).
2.
A.
Laio
and
M.
Parrinello
, “
Escaping free-energy minima
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
12562
12566
(
2002
).
3.
F.
Wang
and
D. P.
Landau
, “
Efficient, multiple-range random walk algorithm to calculate the density of states
,”
Phys. Rev. Lett.
86
,
2050
2053
(
2001
).
4.
C.
Chipot
and
A.
Pohorille
,
Free Energy Calculations
(
Springer
,
2007
).
5.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
1989
).
6.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
, Computational Science Series (
Elsevier Science
,
2001
).
7.
D. P.
Landau
and
K.
Binder
,
A Guide to Monte Carlo Simulations in Statistical Physics
(
Cambridge University Press
,
2014
).
8.
H.
Touchette
, “
The large deviation approach to statistical mechanics
,”
Phys. Rep.
478
,
1
69
(
2009
).
9.
M.
Merolle
,
J. P.
Garrahan
, and
D.
Chandler
, “
Space–time thermodynamics of the glass transition
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
10837
10840
(
2005
).
10.
C.
Valeriani
,
R. J.
Allen
,
M. J.
Morelli
,
D.
Frenkel
, and
P.
Rein ten Wolde
, “
Computing stationary distributions in equilibrium and nonequilibrium systems with forward flux sampling
,”
J. Chem. Phys.
127
,
114109
(
2007
).
11.
C.
Giardinà
,
J.
Kurchan
, and
L.
Peliti
, “
Direct evaluation of large-deviation functions
,”
Phys. Rev. Lett.
96
,
120603
(
2006
).
12.
M.
Tchernookov
and
A. R.
Dinner
, “
A list-based algorithm for evaluation of large deviation functions
,”
J. Stat. Mech.: Theory Exp.
2010
,
P02006
.
13.
T.
Nemoto
and
S.-i.
Sasa
, “
Computation of large deviation statistics via iterative measurement-and-feedback procedure
,”
Phys. Rev. Lett.
112
,
090602
(
2014
).
14.
T.
Nemoto
,
E. G.
Hidalgo
, and
V.
Lecomte
, “
Finite-time and finite-size scalings in the evaluation of large-deviation functions: Analytical study using a birth-death process
,”
Phys. Rev. E
95
,
012102
(
2017
).
15.
E. G.
Hidalgo
,
T.
Nemoto
, and
V.
Lecomte
, “
Finite-time and -size scalings in the evaluation of large deviation functions: Numerical approach in continuous time
,”
Phys. Rev. E
95
,
062134
(
2017
).
16.
T.
Nemoto
,
F.
Bouchet
,
R. L.
Jack
, and
V.
Lecomte
, “
Population-dynamics method with a multicanonical feedback control
,”
Phys. Rev. E
93
,
062123
(
2016
).
17.
P. G.
Bolhuis
,
D.
Chandler
,
C.
Dellago
, and
P. L.
Geissler
, “
Transition path sampling: Throwing ropes over rough mountain passes, in the dark
,”
Annu. Rev. Phys. Chem.
53
,
291
318
(
2002
).
18.
C.
Giardina
,
J.
Kurchan
,
V.
Lecomte
, and
J.
Tailleur
, “
Simulating rare events in dynamical processes
,”
J. Stat. Phys.
145
,
787
811
(
2011
).
19.
C.
Jarzynski
, “
Nonequilibrium equality for free energy differences
,”
Phys. Rev. Lett.
78
,
2690
2693
(
1997
).
20.
G. E.
Crooks
, “
Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences
,”
Phys. Rev. E
60
,
2721
2726
(
1999
).
21.
J. L.
Lebowitz
and
H.
Spohn
, “
A Gallavotti–Cohen-type symmetry in the large deviation functional for stochastic dynamics
,”
J. Stat. Phys.
95
,
333
365
(
1999
).
22.
G.
Gallavotti
and
E. G. D.
Cohen
, “
Dynamical ensembles in nonequilibrium statistical mechanics
,”
Phys. Rev. Lett.
74
,
2694
2697
(
1995
).
23.
S.
Auer
and
D.
Frenkel
, “
Prediction of absolute crystal-nucleation rate in hard-sphere colloids
,”
Nature
409
,
1020
(
2000
).
24.
S.
Auer
and
D.
Frenkel
, “
Crystallization of weakly charged colloidal spheres: A numerical study
,”
J. Phys.: Condens. Matter
14
,
7667
(
2002
).
25.
W.
Ren
,
E.
Vanden-Eijnden
,
P.
Maragakis
, and
W.
E
, “
Transition pathways in complex systems: Application of the finite-temperature string method to the alanine dipeptide
,”
J. Chem. Phys.
123
,
134109
(
2005
).
26.
M.
Berhanu
,
R.
Monchaux
,
S.
Fauve
,
N.
Mordant
,
F.
Pétrélis
,
A.
Chiffaudel
,
F.
Daviaud
,
B.
Dubrulle
,
L.
Marié
,
F.
Ravelet
,
M.
Bourgoin
,
P.
Odier
,
J.-F.
Pinton
, and
R.
Volk
, “
Magnetic field reversals in an experimental turbulent dynamo
,”
Europhys. Lett.
77
,
59001
(
2007
).
27.
F.
Bouchet
and
E.
Simonnet
, “
Random changes of flow topology in two-dimensional and geophysical turbulence
,”
Phys. Rev. Lett.
102
,
094504
(
2009
).
28.
D. R.
Easterling
,
G. A.
Meehl
,
C.
Parmesan
,
S. A.
Changnon
,
T. R.
Karl
, and
L. O.
Mearns
, “
Climate extremes: Observations, modeling, and impacts
,”
Science
289
,
2068
2074
(
2000
).
29.
J. K.
Weber
,
R. L.
Jack
, and
V. S.
Pande
, “
Emergence of glass-like behavior in Markov state models of protein folding dynamics
,”
J. Am. Chem. Soc.
135
,
5501
5504
(
2013
).
30.
C.
Dellago
,
P. G.
Bolhuis
, and
D.
Chandler
, “
Efficient transition path sampling: Application to Lennard-Jones cluster rearrangements
,”
J. Chem. Phys.
108
,
9236
9245
(
1998
).
31.
T. S.
Van Erp
and
P. G.
Bolhuis
, “
Elaborating transition interface sampling methods
,”
J. Comput. Phys.
205
,
157
181
(
2005
).
32.
E.
Weinan
,
W.
Ren
, and
E.
Vanden-Eijnden
, “
Transition pathways in complex systems: Reaction coordinates, isocommittor surfaces, and transition tubes
,”
Chem. Phys. Lett.
413
,
242
247
(
2005
).
33.
R. J.
Allen
,
C.
Valeriani
, and
P. R.
ten Wolde
, “
Forward flux sampling for rare event simulations
,”
J. Phys.: Condens. Matter
21
,
463102
(
2009
).
34.
P.
Bolhuis
and
C.
Dellago
, “
Practical and conceptual path sampling issues
,”
Eur. Phys. J.: Spec. Top.
224
,
2409
2427
(
2015
).
35.
L. O.
Hedges
,
R. L.
Jack
,
J. P.
Garrahan
, and
D.
Chandler
, “
Dynamic order-disorder in atomistic models of structural glass formers
,”
Science
323
,
1309
1313
(
2009
).
36.
T.
Speck
and
D.
Chandler
, “
Constrained dynamics of localized excitations causes a non-equilibrium phase transition in an atomistic model of glass formers
,”
J. Chem. Phys.
136
,
184509
(
2012
).
37.
D. T.
Limmer
and
D.
Chandler
, “
Theory of amorphous ices
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
9413
9418
(
2014
).
38.
A. S.
Mey
,
P. L.
Geissler
, and
J. P.
Garrahan
, “
Rare-event trajectory ensemble analysis reveals metastable dynamical phases in lattice proteins
,”
Phys. Rev. E
89
,
032109
(
2014
).
39.
G. E.
Crooks
and
D.
Chandler
, “
Efficient transition path sampling for nonequilibrium stochastic dynamics
,”
Phys. Rev. E
64
,
026109
(
2001
).
40.
T. R.
Gingrich
,
G. M.
Rotskoff
,
G. E.
Crooks
, and
P. L.
Geissler
, “
Near-optimal protocols in complex nonequilibrium transformations
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
10263
(
2016
).
41.
R. J.
Allen
,
P. B.
Warren
, and
P. R.
Ten Wolde
, “
Sampling rare switching events in biochemical networks
,”
Phys. Rev. Lett.
94
,
018104
(
2005
).
42.
P. I.
Hurtado
and
P. L.
Garrido
, “
Large fluctuations of the macroscopic current in diffusive systems: A numerical test of the additivity principle
,”
Phys. Rev. E
81
,
041102
(
2010
).
43.
T.
Speck
and
J. P.
Garrahan
, “
Space-time phase transitions in driven kinetically constrained lattice models
,”
Eur. Phys. J. B
79
,
1
6
(
2011
).
44.
P. I.
Hurtado
,
C. P.
Espigares
,
J. J.
del Pozo
, and
P. L.
Garrido
, “
Thermodynamics of currents in nonequilibrium diffusive systems: Theory and simulation
,”
J. Stat. Phys.
154
,
214
264
(
2014
).
45.
U.
Ray
,
G. K.-L.
Chan
, and
D. T.
Limmer
, “
Importance sampling large deviations in nonequilibrium steady states: Part II
,”
J. Chem. Phys.
(unpublished).
46.
A. A.
Budini
,
R. M.
Turner
, and
J. P.
Garrahan
, “
Fluctuating observation time ensembles in the thermodynamics of trajectories
,”
J. Stat. Mech.: Theory Exp.
2014
,
P03012
.
47.
N.
Van Kampen
,
Stochastic Processes in Physics and Chemistry
, North-Holland Personal Library (
Elsevier Science
,
1992
).
48.
R.
Chetrite
and
H.
Touchette
, “
Nonequilibrium Markov processes conditioned on large deviations
,”
Ann. Henri Poincaré
16
,
2005
2057
(
2015
).
49.
D.
Chandler
,
Introduction to Modern Statistical Mechanics
(
Oxford University Press
,
1987
), p.
288
.
50.
T.
Speck
,
A.
Malins
, and
C. P.
Royall
, “
First-order phase transition in a model glass former: Coupling of local structure and dynamics
,”
Phys. Rev. Lett.
109
,
195703
(
2012
).
51.
T. R.
Gingrich
and
P. L.
Geissler
, “
Preserving correlations between trajectories for efficient path sampling
,”
J. Chem. Phys.
142
,
234104
(
2015
).
52.
T. S.
Van Erp
, “
Dynamical rare event simulation techniques for equilibrium and nonequilibrium systems
,”
Adv. Chem. Phys.
151
,
27
(
2012
).
53.
S.
Kumar
,
J. M.
Rosenberg
,
D.
Bouzida
,
R. H.
Swendsen
, and
P. A.
Kollman
, “
The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method
,”
J. Comput. Chem.
13
,
1011
1021
(
1992
).
54.
M. R.
Shirts
and
J. D.
Chodera
, “
Statistically optimal analysis of samples from multiple equilibrium states
,”
J. Chem. Phys.
129
,
124105
(
2008
).
55.
P.
Grassberger
, “
Go with the winners: A general Monte Carlo strategy
,”
Comput. Phys. Commun.
147
,
64
70
(
2002
).
56.
J. P.
Garrahan
,
R. L.
Jack
,
V.
Lecomte
,
E.
Pitard
,
K.
van Duijvendijk
, and
F.
van Wijland
, “
First-order dynamical phase transition in models of glasses: An approach based on ensembles of histories
,”
J. Phys. A: Math. Theor.
42
,
075007
(
2009
).
57.
T.
Bodineau
,
V.
Lecomte
, and
C.
Toninelli
, “
Finite size scaling of the dynamical free-energy in a kinetically constrained model
,”
J. Stat. Phys.
147
,
1
17
(
2012
).
58.
E.
Pitard
,
V.
Lecomte
, and
F.
Van Wijland
, “
Dynamic transition in an atomic glass former: A molecular-dynamics evidence
,”
Europhys. Lett.
96
,
56002
(
2011
).
59.
P. I.
Hurtado
and
P. L.
Garrido
, “
Spontaneous symmetry breaking at the fluctuating level
,”
Phys. Rev. Lett.
107
,
180601
(
2011
).
60.
T.
Mitsudo
and
S.
Takesue
, “
Numerical estimation of the current large deviation function in the asymmetric simple exclusion process with open boundary conditions
,”
J. Phys. Soc. Jpn.
80
,
114001
(
2011
).
61.
P. J.
Reynolds
,
D. M.
Ceperley
,
B. J.
Alder
, and
W. A.
Lester
, “
Fixed-node quantum Monte Carlo for molecules
,”
J. Chem. Phys.
77
,
5593
5603
(
1982
).
62.
C. J.
Umrigar
,
M. P.
Nightingale
, and
K. J.
Runge
, “
A diffusion Monte Carlo algorithm with very small time-step errors
,”
J. Chem. Phys.
99
,
2865
2890
(
1993
).
63.
P.
Reimann
,
C.
Van den Broeck
,
H.
Linke
,
P.
Hänggi
,
J.
Rubi
, and
A.
Pérez-Madrid
, “
Giant acceleration of free diffusion by use of tilted periodic potentials
,”
Phys. Rev. Lett.
87
,
010602
(
2001
).
64.
J.
Mehl
,
T.
Speck
, and
U.
Seifert
, “
Large deviation function for entropy production in driven one-dimensional systems
,”
Phys. Rev. E
78
,
011123
(
2008
).
65.
P.
Tsobgni Nyawo
and
H.
Touchette
, “
Large deviations of the current for driven periodic diffusions
,”
Phys. Rev. E
94
,
032101
(
2016
).
66.
A.
Brańka
and
D. M.
Heyes
, “
Algorithms for Brownian dynamics computer simulations: Multivariable case
,”
Phys. Rev. E
60
,
2381
(
1999
).
67.
J.
Kurchan
, “
Fluctuation theorem for stochastic dynamics
,”
J. Phys. A: Math. Gen.
31
,
3719
(
1998
).
68.
T.
Nemoto
,
E. G.
Hidalgo
, and
V.
Lecomte
, “
Finite-time and finite-size scalings in the evaluation of large-deviation functions: Analytical study using a birth-death process
,”
Phys. Rev. E
95
,
012102
(
2017
).
69.
G. M.
Schütz
,
Integrable Stochastic Many-Body Systems
(
Forschungszentrum Julich
,
Zentralbibliothek
,
1998
).
70.
A. B.
Kolomeisky
,
G. M.
Schütz
,
E. B.
Kolomeisky
, and
J. P.
Straley
, “
Phase diagram of one-dimensional driven lattice gases with open boundaries
,”
J. Phys. A: Math. Gen.
31
,
6911
(
1998
).
71.
A. B.
Bortz
,
M. H.
Kalos
, and
J. L.
Lebowitz
, “
A new algorithm for Monte Carlo simulation of Ising spin systems
,”
J. Comput. Phys.
17
,
10
18
(
1975
).
72.
M.
Esposito
and
C.
Van den Broeck
, “
Three faces of the second law. I. Master equation formulation
,”
Phys. Rev. E
82
,
011143
(
2010
).
73.
R.
Jullien
and
R.
Botet
, “
Scaling properties of the surface of the Eden model in d = 2, 3, 4
,”
J. Phys. A: Math. Gen.
18
,
2279
(
1985
).
74.
S.
Whitelam
,
L. O.
Hedges
, and
J. D.
Schmit
, “
Self-assembly at a nonequilibrium critical point
,”
Phys. Rev. Lett.
112
,
155504
(
2014
).
75.
K.
Klymko
,
P. L.
Geissler
,
J. P.
Garrahan
, and
W.
Stephen
, “
Rare behavior of growth processes via umbrella sampling of trajectories
,” e-print arXiv:1707.00767 (
2017
).
76.
J. M.
Kim
and
J.
Kosterlitz
, “
Growth in a restricted solid-on-solid model
,”
Phys. Rev. Lett.
62
,
2289
(
1989
).
77.
M.
Nguyen
and
S.
Vaikuntanathan
, “
Design principles for nonequilibrium self-assembly
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
14231
14236
(
2016
).
You do not currently have access to this content.