Gold nanorods are extensively used for single-molecule fluorescence enhancement as they are easy to synthesize, bio-compatible, and provide high light confinement at their nanometer-sized tips. The current way to estimate fluorescence enhancement relies on binned time traces or on fluorescence correlation spectroscopy. We report on novel ways to extract the enhancement factor in a single-molecule enhancement experiment, avoiding the arbitrary selection of one or a few high-intensity burst(s). These new estimates for the enhancement factor make use of the whole distribution of intensity bursts or of the interphoton delay distribution, which avoids the arbitrary binning of the fluorescence intensity time traces. We present experimental results on the bi-dimensional case, experimentally achieved using a lipid bilayer to support the diffusion of fluorophores. We support our findings with histograms of fluorescence bursts and with an analytical derivation of the interphoton delay distribution of (nearly) immobilized emitters from the fluorescence intensity profile.

1.
W.
Moerner
and
M.
Orrit
, “
Illuminating single molecules in condensed matter
,”
Science
283
(
5408
),
1670
1676
(
1999
).
2.
F.
Kulzer
,
T.
Xia
, and
M.
Orrit
, “
Single molecules as optical nanoprobes for soft and complex matter
,”
Angew. Chem., Int. Ed.
49
(
5
),
854
866
(
2010
).
3.
W.
Zhang
,
M.
Caldarola
,
B.
Pradhan
, and
M.
Orrit
, “
Gold nanorod enhanced fluorescence enables single-molecule electrochemistry of methylene blue
,”
Angew. Chem., Int. Ed.
56
(
13
),
3566
3569
(
2017
).
4.
E. A.
Jares-Erijman
and
T. M.
Jovin
, “
Fret imaging
,”
Nat. Biotechnol.
21
(
11
),
1387
1395
(
2003
).
5.
I. H.
Stein
,
V.
Schüller
,
P.
Böhm
,
P.
Tinnefeld
, and
T.
Liedl
, “
Single-molecule FRET ruler based on rigid DNA origami blocks
,”
ChemPhysChem
12
(
3
),
689
695
(
2011
).
6.
S.
Kalinin
,
T.
Peulen
,
S.
Sindbert
,
P. J.
Rothwell
,
S.
Berger
,
T.
Restle
,
R. S.
Goody
,
H.
Gohlke
, and
C. A.
Seidel
, “
A toolkit and benchmark study for FRET-restrained high-precision structural modeling
,”
Nat. Methods
9
(
12
),
1218
1225
(
2012
).
7.
A.
Kinkhabwala
,
Z.
Yu
,
S.
Fan
,
Y.
Avlasevich
,
K.
Müllen
, and
W.
Moerner
, “
Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna
,”
Nat. Photonics
3
(
11
),
654
657
(
2009
).
8.
H.
Yuan
,
S.
Khatua
,
P.
Zijlstra
,
M.
Yorulmaz
, and
M.
Orrit
, “
Thousand-fold enhancement of single-molecule fluorescence near a single gold nanorod
,”
Angew. Chem., Int. Ed.
52
(
4
),
1217
1221
(
2013
).
9.
S.
Khatua
,
P. M.
Paulo
,
H.
Yuan
,
A.
Gupta
,
P.
Zijlstra
, and
M.
Orrit
, “
Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods
,”
ACS Nano
8
(
5
),
4440
4449
(
2014
).
10.
T. S.
van Zanten
,
M. J.
Lopez-Bosque
, and
M. F.
Garcia-Parajo
, “
Imaging individual proteins and nanodomains on intact cell membranes with a probe-based optical antenna
,”
Small
6
(
2
),
270
275
(
2010
).
11.
L. C.
Estrada
,
P. F.
Aramendía
, and
O. E.
Martínez
, “
10 000 times volume reduction for fluorescence correlation spectroscopy using nano-antennas
,”
Opt. Express
16
(
25
),
20597
20602
(
2008
).
12.
C.
Manzo
,
T. S.
van Zanten
, and
M. F.
Garcia-Parajo
, “
Nanoscale fluorescence correlation spectroscopy on intact living cell membranes with NSOM probes
,”
Biophys. J.
100
(
2
),
L8
L10
(
2011
).
13.
A. A.
Kinkhabwala
,
Z.
Yu
,
S.
Fan
, and
W.
Moerner
, “
Fluorescence correlation spectroscopy at high concentrations using gold bowtie nanoantennas
,”
Chem. Phys.
406
,
3
8
(
2012
).
14.
D.
Punj
,
J.
de Torres
,
H.
Rigneault
, and
J.
Wenger
, “
Gold nanoparticles for enhanced single molecule fluorescence analysis at micromolar concentration
,”
Opt. Express
21
(
22
),
27338
27343
(
2013
).
15.
S.
Khatua
,
H.
Yuan
, and
M.
Orrit
, “
Enhanced-fluorescence correlation spectroscopy at micro-molar dye concentration around a single gold nanorod
,”
Phys. Chem. Chem. Phys.
17
(
33
),
21127
21132
(
2015
).
16.
V.
Flauraud
,
T. S.
van Zanten
,
M.
Mivelle
,
C.
Manzo
,
M. F.
Parajo
, and
J.
Brugger
, “
Large-scale arrays of bowtie nanoaperture antennas for nanoscale dynamics in living cell membranes
,”
Nano Lett.
15
(
6
),
4176
4182
(
2015
).
17.
M.
Wahl
,
Time-Correlated Single Photon Counting
, Technical report, (
PicoQuant
,
Berlin, Germany
,
2014
); see http://www.picoquant.com/images/uploads/page/files/7253/technote_tcspc.pdf.
18.
W.
Becker
,
Advanced Time-Correlated Single Photon Counting Applications
, Springer Series in Chemical Physics (
Springer
,
2015
), Vol. 111.
19.

The usual denomination is microtime but we opt for nanotime to avoid confusion with the macrotime.

20.
J.
Lakowicz
,
Principles of Fluorescence Spectroscopy
(
Springer US
,
2007
).
21.
M.
Lippitz
,
F.
Kulzer
, and
M.
Orrit
, “
Statistical evaluation of single nano-object fluorescence
,”
ChemPhysChem
6
(
5
),
770
789
(
2005
).
22.
D.
Magde
,
E.
Elson
, and
W. W.
Webb
, “
Thermodynamic fluctuations in a reacting system—Measurement by fluorescence correlation spectroscopy
,”
Phys. Rev. Lett.
29
(
11
),
705
(
1972
).
23.
E.
Haustein
and
P.
Schwille
, “
Fluorescence correlation spectroscopy: Novel variations of an established technique
,”
Annu. Rev. Biophys. Biomol. Struct.
36
,
151
169
(
2007
).
24.
A.
Loman
,
I.
Gregor
,
C.
Stutz
,
M.
Mund
, and
J.
Enderlein
, “
Measuring rotational diffusion of macromolecules by fluorescence correlation spectroscopy
,”
Photochem. Photobiol. Sci.
9
(
5
),
627
636
(
2010
).
25.
M. A.
Medina
and
P.
Schwille
, “
Fluorescence correlation spectroscopy for the detection and study of single molecules in biology
,”
BioEssays
24
(
8
),
758
764
(
2002
).
26.
A.
Ghosh
,
S.
Isbaner
,
M.
Veiga-Gutiérrez
,
I.
Gregor
,
J.
Enderlein
, and
N.
Karedla
, “
Quantifying microsecond transition times using fluorescence lifetime correlation spectroscopy
,”
J. Phys. Chem. Lett.
8
(
24
),
6022
6028
(
2017
).
27.
B.
Pradhan
,
S.
Khatua
,
A.
Gupta
,
T.
Aartsma
,
G.
Canters
, and
M.
Orrit
, “
Gold-nanorod-enhanced fluorescence correlation spectroscopy of fluorophores with high quantum yield in lipid bilayers
,”
J. Phys. Chem. C
120
,
25996
26003
(
2016
).
28.
L.
Langguth
and
A. F.
Koenderink
, “
Simple model for plasmon enhanced fluorescence correlation spectroscopy
,”
Opt. Express
22
(
13
),
15397
15409
(
2014
).
29.
R.
Verberk
and
M.
Orrit
, “
Photon statistics in the fluorescence of single molecules and nanocrystals: Correlation functions versus distributions of on- and off-times
,”
J. Chem. Phys.
119
(
4
),
2214
(
2003
).
30.

Note that the Laplace transformation is usually applied to time-dependent functions, giving rate-dependent functions. Here, we apply it to a function of the rate and thus obtain a time-dependent transform.

31.
A. M.
Stoneham
, “
Shapes of inhomogeneously broadened resonance lines in solids
,”
Rev. Mod. Phys.
41
,
82
108
(
1969
).
32.
L.
Fleury
,
A.
Zumbusch
,
M.
Orrit
,
R.
Brown
, and
J.
Bernard
, “
Spectral diffusion and individual two-level systems probed by fluorescence of single terrylene molecules in a polyethylene matrix
,”
J. Lumin.
56
(
1-6
),
15
28
(
1993
).
33.
G.
Acuna
,
F.
Möller
,
P.
Holzmeister
,
S.
Beater
,
B.
Lalkens
, and
P.
Tinnefeld
, “
Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas
,”
Science
338
(
6106
),
506
510
(
2012
).
34.
R.
Jungmann
,
C.
Steinhauer
,
M.
Scheible
,
A.
Kuzyk
,
P.
Tinnefeld
, and
F. C.
Simmel
, “
Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami
,”
Nano Lett.
10
(
11
),
4756
4761
(
2010
).
35.
D.
Punj
,
M.
Mivelle
,
S. B.
Moparthi
,
T. S.
van Zanten
,
H.
Rigneault
,
N. F.
van Hulst
,
M. F.
García-Parajó
, and
J.
Wenger
, “
A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations
,”
Nat. Nanotechnol.
8
(
7
),
512
(
2013
).
You do not currently have access to this content.