Single molecule Förster resonance energy transfer (smFRET) is a popular tool to study biological systems that undergo topological transitions on the nanometer scale. smFRET experiments typically require recording of long smFRET trajectories and subsequent statistical analysis to extract parameters such as the states’ lifetimes. Alternatively, analysis of probability distributions exploits the shapes of smFRET distributions at well chosen exposure times and hence works without the acquisition of time traces. Here, we describe a variant that utilizes statistical tests to compare experimental datasets with Monte Carlo simulations. For a given model, parameters are varied to cover the full realistic parameter space. As output, the method yields p-values which quantify the likelihood for each parameter setting to be consistent with the experimental data. The method provides suitable results even if the actual lifetimes differ by an order of magnitude. We also demonstrated the robustness of the method to inaccurately determine input parameters. As proof of concept, the new method was applied to the determination of transition rate constants for Holliday junctions.

1.
S.
Shashkova
and
M.
Leake
,
Biosci. Rep.
37
,
BSR20170031
(
2017
).
2.
S.
Preus
,
L. L.
Hildebrandt
, and
V.
Birkedal
,
Biophys. J.
111
,
1278
(
2016
).
3.
S.
Wang
,
R.
Vafabakhsh
,
W. F.
Borschel
,
T.
Ha
, and
C. G.
Nichols
,
Nat. Struct. Mol. Biol.
23
,
31
(
2015
).
4.
J. B.
Huppa
,
M.
Axmann
,
M. A.
Mörtelmaier
,
B. F.
Lillemeier
,
E. W.
Newell
,
M.
Brameshuber
,
L. O.
Klein
,
G. J.
Schütz
, and
M. M.
Davis
,
Nature
463
,
963
967
(
2010
).
5.
Protein Dynamics
, edited by
D. R.
Livesay
(
Humana Press
,
2014
).
6.
Protein Conformational Dynamics
, edited by
K.-l.
Han
,
X.
Zhang
, and
M.-j.
Yang
(
Springer International Publishing
,
2014
).
7.
M.
Dahan
,
A. A.
Deniz
,
T.
Ha
,
D. S.
Chemla
,
P. G.
Schultz
, and
S.
Weiss
,
Chem. Phys.
247
,
85
(
1999
).
8.
Y.
Liu
,
J.
Park
,
K. A.
Dahmen
,
Y. R.
Chemla
, and
T.
Ha
,
J. Phys. Chem. B
114
,
5386
5403
(
2010
).
9.
J. E.
Bronson
,
J.
Fei
,
J. M.
Hofman
,
R. L.
Gonzalez
, and
C. H.
Wiggins
,
Biophys. J.
97
,
3196
3205
(
2009
).
10.
D. L.
Ensign
and
V. S.
Pande
,
J. Phys. Chem. B
114
,
280
292
(
2010
).
11.
S. A.
McKinney
,
C.
Joo
, and
T.
Ha
,
Biophys. J.
91
,
1941
1951
(
2006
).
12.
S.
Kalinin
,
A.
Valeri
,
M.
Antonik
,
S.
Felekyan
, and
C. A. M.
Seidel
,
J. Phys. Chem. B
114
,
7983
7995
(
2010
).
13.
Y.
Santoso
,
J. P.
Torella
, and
A. N.
Kapanidis
,
ChemPhysChem
11
,
2209
2219
(
2010
).
14.
E.
Nir
,
X.
Michalet
,
K. M.
Hamadani
,
T. A.
Laurence
,
D.
Neuhauser
,
Y.
Kovchegov
, and
S.
Weiss
,
J. Phys. Chem. B
110
,
22103
22124
(
2006
).
15.
A.
Hartmann
,
G.
Krainer
,
S.
Keller
, and
M.
Schlierf
,
Anal. Chem.
87
,
11224
11232
(
2015
).
16.
S.
Farooq
and
J.
Hohlbein
,
Phys. Chem. Chem. Phys.
17
,
27862
27872
(
2015
).
17.
S.
Wieser
,
M.
Axmann
, and
G. J.
Schütz
,
Biophys. J.
95
,
5988
(
2008
).
18.
M.
Axmann
,
J.
Huppa
,
M.
Davis
, and
G.
Schütz
,
Biophys. J.
103
,
L17
L19
(
2012
).
19.
S. A.
McKinney
,
A.-C.
Déclais
,
D. M.
Lilley
, and
T.
Ha
,
Nat. Struct. Biol.
10
,
93
97
(
2003
).
20.
M.
Howarth
,
D. J.-F.
Chinnapen
,
K.
Gerrow
,
P. C.
Dorrestein
,
M. R.
Grandy
,
N. L.
Kelleher
,
A.
El-Husseini
, and
A. Y.
Ting
,
Nat. Methods
3
,
267
273
(
2006
).
21.
H.
Babcock
,
Y. M.
Sigal
, and
X.
Zhuang
,
Opt. Nanosc.
1
,
6
(
2012
).
22.
J. C.
Crocker
and
D. G.
Grier
,
J. Colloid Interface Sci.
179
,
298
(
1996
).
23.
A. N.
Kapanidis
,
N. K.
Lee
,
T. A.
Laurence
,
S.
Doose
,
E.
Margeat
, and
S.
Weiss
,
Proc. Natl. Acad. Sci. U. S. A.
101
,
8936
8941
(
2004
).
24.
See https://github.com/schuetzgroup/fret-tester for source code and documentation of the analysis software.
25.
L.
Zhu
,
W.
Zhang
,
D.
Elnatan
, and
B.
Huang
,
Nat. Methods
9
,
721
723
(
2012
).
26.
P. A.
Pappas
and
V.
DePuy
, in
Proceeding of the SouthEast SAS Users Group Conference
(
SESUG
,
2004
), Vol. TU04, Paper TU04.

Supplementary Material

You do not currently have access to this content.