Hierarchical features of the energy landscape of the folding/unfolding behavior of adenylate kinase, including its dependence on denaturant concentration, are elucidated in terms of single-molecule fluorescence resonance energy transfer (smFRET) measurements in which the proteins are encapsulated in a lipid vesicle. The core in constructing the energy landscape from single-molecule time-series across different denaturant concentrations is the application of rate-distortion theory (RDT), which naturally considers the effects of measurement noise and sampling error, in combination with change-point detection and the quantification of the FRET efficiency-dependent photobleaching behavior. Energy landscapes are constructed as a function of observation time scale, revealing multiple partially folded conformations at small time scales that are situated in a superbasin. As the time scale increases, these denatured states merge into a single basin, demonstrating the coarse-graining of the energy landscape as observation time increases. Because the photobleaching time scale is dependent on the conformational state of the protein, possible nonequilibrium features are discussed, and a statistical test for violation of the detailed balance condition is developed based on the state sequences arising from the RDT framework.

1.
M.
Tavakoli
,
J. N.
Taylor
,
C.-B.
Li
,
T.
Komatsuzaki
, and
S.
Pressé
,
Advances in Chemical Physics
(
John Wiley & Sons, Inc.
,
2017
), pp.
205
305
.
2.
M.
Andrec
,
R. M.
Levy
, and
D. S.
Talaga
,
J. Phys. Chem. A
107
,
7454
(
2003
).
3.
S. A.
McKinney
,
C.
Joo
, and
T.
Ha
,
Biophys. J.
91
,
1941
(
2006
).
4.
M.
Pirchi
,
R.
Tsukanov
,
R.
Khamis
,
T. E.
Tomov
,
Y.
Berger
,
D. C.
Khara
,
H.
Volkov
,
G.
Haran
, and
E.
Nir
,
J. Phys. Chem. B
120
,
13065
(
2016
).
5.
M.
Pirchi
,
G.
Ziv
,
I.
Riven
,
S. S.
Cohen
,
N.
Zohar
,
Y.
Barak
, and
G.
Haran
,
Nat. Commun.
2
,
493
(
2011
).
6.
J. E.
Bronson
,
J.
Fei
,
J. M.
Hofman
,
R. L.
Gonzalez
, Jr.
, and
C. H.
Wiggins
,
Biophys. J.
97
,
3196
(
2009
).
7.
J.-W.
van de Meent
,
J. E.
Bronson
,
F.
Wood
,
R. L.
Gonzalez
, and
C. H.
Wiggins
,
JMLR Workshop Conf. Proc.
28
,
361
(
2013
).
8.
I.
Sgouralis
and
S.
Pressé
,
Biophys. J.
112
,
2021
(
2017
).
9.
I.
Sgouralis
and
S.
Pressé
,
Biophys. J.
112
,
2117
(
2017
).
10.
C. R.
Shalizi
and
J. P.
Crutchfield
,
J. Stat. Phys.
104
,
817
(
2001
).
11.
C. J.
Ellison
,
J. R.
Mahoney
,
R. G.
James
,
J. P.
Crutchfield
, and
J.
Reichardt
,
Chaos
21
,
037107
(
2011
).
12.
A.
Baba
and
T.
Komatsuzaki
,
Proc. Natl. Acad. Sci. U. S. A.
104
,
19297
(
2007
).
13.
A.
Baba
and
T.
Komatsuzaki
,
Phys. Chem. Chem. Phys.
13
,
1395
(
2011
).
14.
B.
Shuang
,
D.
Cooper
,
J. N.
Taylor
,
L.
Kisley
,
J.
Chen
,
W.
Wang
,
C. B.
Li
,
T.
Komatsuzaki
, and
C. F.
Landes
,
J. Phys. Chem. Lett.
5
,
3157
(
2014
).
15.
C. E.
Shannon
,
Bell Syst. Tech. J.
27
,
379
(
1948
).
16.
J. N.
Taylor
,
C.-B.
Li
,
D. R.
Cooper
,
C. F.
Landes
, and
T.
Komatsuzaki
,
Sci. Rep.
5
,
9174
(
2015
).
17.
D. J.
Wales
,
Energy Landscapes
(
Cambridge University Press
,
Cambridge
,
2003
).
18.
W. A.
Taylor
, Change-point analysis: A powerful new tool for detecting changes, http://www.variation.com/cpa/tech/changepoint.html,
2000
.
19.
D.
Montiel
,
H.
Cang
, and
H.
Yang
,
J. Phys. Chem. B
110
,
19763
(
2006
).
20.
L. P.
Watkins
and
H.
Yang
,
J. Phys. Chem. B
109
,
617
(
2004
).
21.
C.-B.
Li
,
H.
Ueno
,
R.
Watanabe
,
H.
Noji
, and
T.
Komatsuzaki
,
Nat. Commun.
6
,
10223
(
2015
).
22.
S. V.
Krivov
and
M.
Karplus
,
J. Chem. Phys.
117
,
10894
(
2002
).
23.
S. V.
Krivov
and
M.
Karplus
,
Proc. Natl. Acad. Sci. U. S. A.
101
,
14766
(
2004
).
24.
T. M.
Cover
and
J. A.
Thomas
,
Elements of Information Theory
(
Wiley
,
New York
,
1991
).
25.
R. E.
Blahut
,
IEEE Trans. Inf. Theory
18
,
460
(
1972
).
26.
S.
Arimoto
,
IEEE Trans. Inf. Theory
18
,
14
(
1972
).
27.
L. V.
Kantorovich
,
J. Math. Sci.
133
,
1381
(
2006
)
L. V.
Kantorovich
, [
Dokl. Akad. Nauk SSSR
37
,
227
(
1942
)] (in Russian).
28.
N.
Slonim
,
G. S.
Atwal
,
G.
Tkačik
, and
W.
Bialek
,
Proc. Natl. Acad. Sci. U. S. A.
102
,
18297
(
2005
).
29.
H.
Akaike
,
IEEE Trans. Autom. Control
19
,
716
(
1974
).
33.
J. G.
Kemeny
and
J. L.
Snell
,
Finite Markov Chains
, 1st ed. (
Springer-Verlag
,
New York
,
1976
).
34.
J. G.
Skellam
,
J. R. Stat. Soc.
109
,
296
(
1946
).
35.
R. K.P.
Zia
and
B.
Schmittmann
,
J. Stat. Mech.: Theory Exp.
2007
,
P07012
.
36.
T.
Platini
,
Phys. Rev. E
83
,
011119
(
2011
).
37.
P.
Sibani
,
J. C.
Schön
,
P.
Salamon
, and
J.-O.
Andersson
,
Europhys. Lett.
22
,
479
(
1993
).
38.
P.
Sibani
and
P.
Schriver
,
Phys. Rev. B
49
,
6667
(
1994
).
39.
A.
Baba
and
T.
Komatsuzaki
,
Single Molecule Biophysics
(
John Wiley & Sons, Inc.
,
2011
), pp.
299
327
.
40.
D. A.
Evans
and
D. J.
Wales
,
J. Chem. Phys.
118
,
3891
(
2003
).
41.
D. J.
Wales
and
P.
Salamon
,
Proc. Natl. Acad. Sci. U. S. A.
111
,
617
(
2014
).
42.
I. V.
Gopich
and
A.
Szabo
,
J. Phys. Chem. B
107
,
5058
(
2003
).
43.
K.
Kamagata
,
T.
Kawaguchi
,
Y.
Iwahashi
,
A.
Baba
,
K.
Fujimoto
,
T.
Komatsuzaki
,
Y.
Sambongi
,
Y.
Goto
, and
S.
Takahashi
,
J. Am. Chem. Soc.
134
,
11525
(
2012
).
44.
L. R.
Ford
and
D. R.
Fulkerson
,
Can. J. Math.
8
,
399
(
1956
).
45.
R. E.
Gomory
and
T. C.
Hu
,
J. Soc. Ind. Appl. Math.
9
,
551
(
1961
).
46.
M.
Brand
,
N.
Oliver
, and
A.
Pentland
, in
Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(
IEEE
,
1997
), p.
994
.

Supplementary Material

You do not currently have access to this content.