RNA (ribonucleic acid) molecules are highly flexible biopolymers fluctuating at physiological temperatures among many different conformations that are represented by minima in a hierarchical conformational free energy landscape. Here we have employed single-molecule FRET (smFRET) to explore the energy landscape of the B. subtilis yitJ SAM-I riboswitch (RS). In this small RNA molecule, specific binding of an S-adenosyl-L-methionine (SAM) ligand in the aptamer domain regulates gene expression by inducing structural changes in another domain, the expression platform, causing transcription termination by the RNA polymerase. We have measured smFRET histograms over wide ranges of Mg2+ concentration for three RS variants that were specifically labeled with fluorescent dyes on different sites. In the analysis, different conformations are associated with discrete Gaussian model distributions, which are typically fairly broad on the FRET efficiency scale and thus can be extremely challenging to unravel due to their mutual overlap. Our earlier work on two SAM-I RS variants revealed four major conformations. By introducing a global fitting procedure which models both the Mg2+ concentration dependencies of the fractional populations and the average FRET efficiencies of the individual FRET distributions according to Mg2+ binding isotherms, we were able to consistently describe the histogram data of both variants at all studied Mg2+ concentrations. With the third FRET-labeled variant, however, we found significant deviations when applying the four-state model to the data. This can arise because the different FRET labeling of the new variant allows two states to be distinguished that were previously not separable due to overlap. Indeed, the resulting five-state model presented here consistently describes the smFRET histograms of all three variants as well as their variations with Mg2+ concentration. We also performed a triangulation of the donor position for two of the constructs to explore how the expression platform is oriented with respect to the aptamer.

1.
N. J.
Reiter
,
C. W.
Chan
, and
A.
Mondragon
,
Curr. Opin. Struct. Biol.
21
,
319
326
(
2011
).
2.
A. M.
Mustoe
,
C. L.
Brooks
, and
H. M.
Al-Hashimi
,
Annu. Rev. Biochem.
83
,
441
466
(
2014
).
3.
K.
Kruger
,
P. J.
Grabowski
,
A. J.
Zaug
,
J.
Sands
,
D. E.
Gottschling
, and
T. R.
Cech
,
Cell
31
,
147
157
(
1982
).
4.
C.
Guerrier-Takada
,
K.
Gardiner
,
T.
Marsh
,
N.
Pace
, and
S.
Altman
,
Cell
35
,
849
857
(
1983
).
5.
D.
Thirumalai
,
N.
Lee
,
S. A.
Woodson
, and
D.
Klimov
,
Annu. Rev. Phys. Chem.
52
,
751
762
(
2001
).
6.
D.
Thirumalai
and
C.
Hyeon
,
Biochemistry
44
,
4957
4970
(
2005
).
7.
H.
Frauenfelder
,
S. G.
Sligar
, and
P. G.
Wolynes
,
Science
254
,
1598
1603
(
1991
).
8.
G. U.
Nienhaus
,
J. D.
Müller
,
B. H.
McMahon
, and
H.
Frauenfelder
,
Phys. D
107
,
297
311
(
1997
).
9.
B.
Schuler
,
E. A.
Lipman
, and
W. A.
Eaton
,
Nature
419
,
743
747
(
2002
).
10.
E.
Rhoades
,
E.
Gussakovsky
, and
G.
Haran
,
Proc. Natl. Acad. Sci. U. S. A.
100
,
3197
3202
(
2003
).
11.
E. V.
Kuzmenkina
,
C. D.
Heyes
, and
G. U.
Nienhaus
,
Proc. Natl. Acad. Sci. U. S. A.
102
,
15471
15476
(
2005
).
12.
H. D.
Kim
,
G. U.
Nienhaus
,
T.
Ha
,
J. W.
Orr
,
J. R.
Williamson
, and
S.
Chu
,
Proc. Natl. Acad. Sci. U. S. A.
99
,
4284
4289
(
2002
).
13.
B.
Heppell
,
S.
Blouin
,
A. M.
Dussault
,
J.
Mulhbacher
,
E.
Ennifar
,
J. C.
Penedo
, and
D. A.
Lafontaine
,
Nat. Chem. Biol.
7
,
384
392
(
2011
).
14.
K. C.
Suddala
,
J.
Wang
,
Q.
Hou
, and
N. G.
Walter
,
J. Am. Chem. Soc.
137
,
14075
14083
(
2015
).
15.
A. Y.
Kobitski
,
A.
Nierth
,
M.
Helm
,
A.
Jäschke
, and
G. U.
Nienhaus
,
Nucleic Acids Res.
35
,
2047
2059
(
2007
).
16.
H. S.
Chung
and
I. V.
Gopich
,
Phys. Chem. Chem. Phys.
16
,
18644
18657
(
2014
).
18.
K.
Dammertz
,
M.
Hengesbach
,
M.
Helm
,
G. U.
Nienhaus
, and
A. Y.
Kobitski
,
Biochemistry
50
,
3107
3115
(
2011
).
19.
R.
Rieger
,
A.
Kobitski
,
H.
Sielaff
, and
G. U.
Nienhaus
,
ChemPhysChem
12
,
627
633
(
2011
).
20.
R. K.
Montange
and
R. T.
Batey
,
Nature
441
,
1172
1175
(
2006
).
21.
W. C.
Winkler
,
A.
Nahvi
,
N.
Sudarsan
,
J. E.
Barrick
, and
R. R.
Breaker
,
Nat. Struct. Biol.
10
,
701
707
(
2003
).
22.
W. C.
Winkler
and
R. R.
Breaker
,
ChemBioChem
4
,
1024
1032
(
2003
).
23.
R. K.
Montange
and
R. T.
Batey
,
Annu. Rev. Biophys.
37
,
117
133
(
2008
).
24.
J. X.
Wang
and
R. R.
Breaker
,
Biochem. Cell Biol.
86
,
157
168
(
2008
).
25.
J. J.
Trausch
,
Z.
Xu
,
A. L.
Edwards
,
F. E.
Reyes
,
P. E.
Ross
,
R.
Knight
, and
R. T.
Batey
,
Proc. Natl. Acad. Sci. U. S. A.
111
,
6624
6629
(
2014
).
26.
R. K.
Montange
,
E.
Mondragon
,
D.
van Tyne
,
A. D.
Garst
,
P.
Ceres
, and
R. T.
Batey
,
J. Mol. Biol.
396
,
761
772
(
2010
).
27.
B.
Heppell
and
D. A.
Lafontaine
,
Biochemistry
47
,
1490
1499
(
2008
).
28.
D. J.
Klein
,
T. M.
Schmeing
,
P. B.
Moore
, and
T. A.
Steitz
,
EMBO J.
20
,
4214
4221
(
2001
).
29.
W. C.
Winkler
,
F. J.
Grundy
,
B. A.
Murphy
, and
T. M.
Henkin
,
RNA
7
,
1165
1172
(
2001
).
30.
B. A.
McDaniel
,
F. J.
Grundy
, and
T. M.
Henkin
,
Mol. Microbiol.
57
,
1008
1021
(
2005
).
31.
C.
Lu
,
F.
Ding
,
A.
Chowdhury
,
V.
Pradhan
,
J.
Tomsic
,
W. M.
Holmes
,
T. M.
Henkin
, and
A.
Ke
,
J. Mol. Biol.
404
,
803
818
(
2010
).
32.
C. D.
Stoddard
,
R. K.
Montange
,
S. P.
Hennelly
,
R. P.
Rambo
,
K. Y.
Sanbonmatsu
, and
R. T.
Batey
,
Structure
18
,
787
797
(
2010
).
33.
F.
Aboul-ela
,
W.
Huang
,
M. A.
Elrahman
,
V.
Boyapati
, and
P.
Li
,
Wiley Interdiscip. Rev.: RNA
6
,
631
650
(
2015
).
34.
B. A.
McDaniel
,
F. J.
Grundy
,
I.
Artsimovitch
, and
T. M.
Henkin
,
Proc. Natl. Acad. Sci. U. S. A.
100
,
3083
3088
(
2003
).
35.
B. J.
Tucker
and
R. R.
Breaker
,
Curr. Opin. Struct. Biol.
15
,
342
348
(
2005
).
36.
S. P.
Hennelly
,
I. V.
Novikova
, and
K. Y.
Sanbonmatsu
,
Nucleic Acids Res.
41
,
1922
1935
(
2013
).
37.
V. K.
Boyapati
,
W.
Huang
,
J.
Spedale
, and
F.
Aboul-Ela
,
RNA
18
,
1230
1243
(
2012
).
38.
U.
Rieder
,
C.
Kreutz
, and
R.
Micura
,
Proc. Natl. Acad. Sci. U. S. A.
107
,
10804
10809
(
2010
).
39.
K.
Neupane
,
H.
Yu
,
D. A.
Foster
,
F.
Wang
, and
M. T.
Woodside
,
Nucleic Acids Res.
39
,
7677
7687
(
2011
).
40.
K. L.
Frieda
and
S. M.
Block
,
Science
338
,
397
400
(
2012
).
41.
C.
Manz
,
A. Y.
Kobitski
,
A.
Samanta
,
B.
Keller
,
A.
Jäschke
, and
G. U.
Nienhaus
,
Nat. Chem. Biol.
13
,
1172
1178
(
2017
).
42.
A. N.
Kapanidis
,
N. K.
Lee
,
T. A.
Laurence
,
S.
Doose
,
E.
Margeat
, and
S.
Weiss
,
Proc. Natl. Acad. Sci. U. S. A.
101
,
8936
8941
(
2004
).
43.
M. A.
Osborne
,
S.
Balasubramanian
,
W. S.
Furey
, and
D.
Klenerman
,
J. Phys. Chem. B
102
,
3160
3167
(
1998
).
44.
A. Y.
Kobitski
,
M.
Hengesbach
,
M.
Helm
, and
G. U.
Nienhaus
,
Angew. Chem., Int. Ed.
47
,
4326
4330
(
2008
).
45.
J. J.
McCann
,
U. B.
Choi
,
L.
Zheng
,
K.
Weninger
, and
M. E.
Bowen
,
Biophys. J.
99
,
961
970
(
2010
).
46.
C. D.
Heyes
,
A. Y.
Kobitski
,
E. V.
Amirgoulova
, and
G. U.
Nienhaus
,
J. Phys. Chem. B
108
,
13387
13394
(
2004
).
47.
B.
Sacca
,
Y.
Ishitsuka
,
R.
Meyer
,
A.
Sprengel
,
E. C.
Schöneweiss
,
G. U.
Nienhaus
, and
C. M.
Niemeyer
,
Angew. Chem., Int. Ed.
54
,
3592
3597
(
2015
).
48.
See https://cplc.illinois.edu/software for smFRET data acquisition and analysis package.
49.
S. E.
McDowell
,
J. M.
Jun
, and
N. G.
Walter
,
RNA
16
,
2414
2426
(
2010
).
50.
E. V.
Kuzmenkina
,
C. D.
Heyes
, and
G. U.
Nienhaus
,
J. Mol. Biol.
357
,
313
324
(
2006
).
51.
B. G.
Keller
,
A.
Kobitski
,
A.
Jäschke
,
G. U.
Nienhaus
, and
F.
Noé
,
J. Am. Chem. Soc.
136
,
4534
4543
(
2014
).
52.
M.
Dimura
,
T. O.
Peulen
,
C. A.
Hanke
,
A.
Prakash
,
H.
Gohlke
, and
C. A.
Seidel
,
Curr. Opin. Struct. Biol.
40
,
163
185
(
2016
).
53.
M. C.
Murphy
,
I.
Rasnik
,
W.
Cheng
,
T. M.
Lohman
, and
T.
Ha
,
Biophys. J.
86
,
2530
2537
(
2004
).
54.
G.
Caliskan
,
C.
Hyeon
,
U.
Perez-Salas
,
R. M.
Briber
,
S. A.
Woodson
, and
D.
Thirumalai
,
Phys. Rev. Lett.
95
,
268303
(
2005
).
55.
J. M.
Berg
,
J. L.
Tymoczko
, and
L.
Stryer
,
Biochemistry
(
W. H. Freeman
,
Basingstoke
,
2012
).
56.
S.
Sindbert
,
S.
Kalinin
,
H.
Nguyen
,
A.
Kienzler
,
L.
Clima
,
W.
Bannwarth
,
B.
Appel
,
S.
Muller
, and
C. A.
Seidel
,
J. Am. Chem. Soc.
133
,
2463
2480
(
2011
).
57.
O.
Coban
,
D. C.
Lamb
,
E.
Zaychikov
,
H.
Heumann
, and
G. U.
Nienhaus
,
Biophys. J.
90
,
4605
4617
(
2006
).
58.
S.
Kalinin
,
T.
Peulen
,
S.
Sindbert
,
P. J.
Rothwell
,
S.
Berger
,
T.
Restle
,
R. S.
Goody
,
H.
Gohlke
, and
C. A.
Seidel
,
Nat. Methods
9
,
1218
1225
(
2012
).
59.
W. J.
Greenleaf
,
K. L.
Frieda
,
D. A.
Foster
,
M. T.
Woodside
, and
S. M.
Block
,
Science
319
,
630
633
(
2008
).
60.
B.
Furtig
,
S.
Nozinovic
,
A.
Reining
, and
H.
Schwalbe
,
Curr. Opin. Struct. Biol.
30
,
112
124
(
2015
).
61.
A.
Reining
,
S.
Nozinovic
,
K.
Schlepckow
,
F.
Buhr
,
B.
Furtig
, and
H.
Schwalbe
,
Nature
499
,
355
359
(
2013
).
62.
N. J.
Baird
,
N.
Kulshina
, and
A. R.
Ferre-D´Amare
,
RNA Biol.
7
,
328
332
(
2010
).
63.
J. K.
Wickiser
,
W. C.
Winkler
,
R. R.
Breaker
, and
D. M.
Crothers
,
Mol. Cell
18
,
49
60
(
2005
).
64.
J. F.
Lemay
,
J. C.
Penedo
,
R.
Tremblay
,
D. M.
Lilley
, and
D. A.
Lafontaine
,
Chem. Biol.
13
,
857
868
(
2006
).
65.
U.
Vogel
and
K. F.
Jensen
,
J. Bacteriol.
176
,
2807
2813
(
1994
).
66.
S. C.
Flores
and
R. B.
Altman
,
RNA
16
,
1769
1778
(
2010
).

Supplementary Material

You do not currently have access to this content.