Escape-time electrometry is a recently developed experimental technique that offers the ability to measure the effective electrical charge of a single biomolecule in solution with sub-elementary charge precision. The approach relies on measuring the average escape-time of a single charged macromolecule or molecular species transiently confined in an electrostatic fluidic trap. Comparing the experiments with the predictions of a mean-field model of molecular electrostatics, we have found that the measured effective charge even reports on molecular conformation, e.g., folded or disordered state, and non-uniform charge distribution in disordered proteins or polyelectrolytes. Here we demonstrate the ability to use the spectral dimension to distinguish minute differences in electrical charge between individual molecules or molecular species in a single simultaneous measurement, under identical experimental conditions. Using one spectral channel for referenced measurement, this kind of photophysical distinguishability essentially eliminates the need for accurate knowledge of key experimental parameters, otherwise obtained through intensive characterization of the experimental setup. As examples, we demonstrate the ability to detect small differences (∼5%) in the length of double-stranded DNA fragments as well as single amino acid exchange in an intrinsically disordered protein, prothymosin α.

1.
M. F.
Perutz
, “
Electrostatic effects in proteins
,”
Science
201
,
1187
1191
(
1978
).
2.
A.
Wada
and
H.
Nakamura
, “
Nature of the charge distribution in proteins
,”
Nature
293
,
757
758
(
1981
).
3.
D. B.
Thompson
,
J. J.
Cronican
, and
D. R.
Liu
, “
Engineering and identifying supercharged proteins for macromolecule delivery into mammalian cells
,”
Methods Enzymol.
503
,
293
319
(
2012
).
4.
M. S.
Lawrence
,
K. J.
Phillips
, and
D. R.
Liu
, “
Supercharging proteins can impart unusual resilience
,”
J. Am. Chem. Soc.
129
,
10110
10112
(
2007
).
5.
S.
Mirceta
, “
Evolution of mammalian diving capacity traced by myoglobin net surface charge
,”
Science
340
,
1234192
(
2013
).
6.
S. C. L.
Kamerlin
,
P. K.
Sharma
,
R. B.
Prasad
, and
A.
Warshel
, “
Why nature really chose phosphate
,”
Q. Rev. Biophys.
46
,
1
132
(
2013
).
7.
A.
Bah
,
R. M.
Vernon
,
Z.
Siddiqui
,
M.
Krzeminski
,
R.
Muhandiram
,
C.
Zhao
,
N.
Sonenberg
,
L. E.
Kay
, and
J. D.
Forman-Kay
, “
Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch
,”
Nature
519
,
106
109
(
2015
).
8.
A. M.
Bode
and
Z. G.
Dong
, “
Post-translational modification of p53 in tumorigenesis
,”
Nat. Rev. Cancer
4
,
793
805
(
2004
).
9.
L.
Martin
,
X.
Latypova
, and
F.
Terro
, “
Post-translational modifications of tau protein: Implications for Alzheimer’s disease
,”
Neurochem. Int.
58
,
458
471
(
2011
).
10.
J. T. G.
Overbeek
and
M. J.
Voorn
, “
Phase separation in polyelectrolyte solutions. Theory of complex coacervation
,”
J. Cell. Comp. Physiol.
49
,
7
26
(
1957
).
11.
W. M.
Aumiller
and
C. D.
Keating
, “
Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles
,”
Nat. Chem.
8
,
129
137
(
2016
).
12.
G. S.
Manning
, “
Limiting laws and counterion condensation in polyelectrolyte solutions. I. colligative properties
,”
J. Chem. Phys.
51
,
924
933
(
1969
).
13.
G. S.
Manning
, “
Molecular theory of polyelectrolyte solutions with applications to electrostatic properties of polynucleotides
,”
Q. Rev. Biophys.
11
,
179
246
(
1978
).
14.
G. S.
Manning
, “
Electrostatic free energies of spheres, cylinders, and planes in counterion condensation theory with some applications
,”
Macromolecules
40
,
8071
8081
(
2007
).
15.
R. R.
Netz
and
H.
Orland
, “
Variational charge renormalization in charged systems
,”
Eur. Phys. J. E
11
,
301
311
(
2003
).
16.
B. W.
Ninham
and
V. A.
Parsegian
, “
Electrostatic potential between surfaces bearing ionizable groups in ionic equilibrium with physiologic saline solution
,”
J. Theor. Biol.
31
,
405
428
(
1971
).
17.
S.
Alexander
,
P. M.
Chaikin
,
P.
Grant
,
G. J.
Morales
,
P.
Pincus
, and
D.
Hone
, “
Charge renormalization, osmotic-pressure, and bulk modulus of colloidal crystals: Theory
,”
J. Chem. Phys.
80
,
5776
5781
(
1984
).
18.
M.
Aubouy
,
E.
Trizac
, and
L.
Bocquet
, “
Effective charge versus bare charge: An analytical estimate for colloids in the infinite dilution limit
,”
J. Phys. A: Math. Gen.
36
,
5835
5840
(
2003
).
19.
M.
Lund
and
B.
Jönsson
, “
Charge regulation in biomolecular solution
,”
Q. Rev. Biophys.
46
,
265
281
(
2013
).
20.
R. W.
O’Brien
and
L. R.
White
, “
Electrophoretic mobility of a spherical colloidal particle
,”
J. Chem. Soc., Faraday Trans. 2
74
,
1607
1626
(
1978
).
21.
J. M.
Gao
,
M.
Mammen
, and
G. M.
Whitesides
, “
Evaluating electrostatic contributions to binding with the use of protein charge ladders
,”
Science
272
,
535
537
(
1996
).
22.
I.
Gitlin
,
J. D.
Carbeck
, and
G. M.
Whitesides
, “
Why are proteins charged? Networks of charge-charge interactions in proteins measured by charge ladders and capillary electrophoresis
,”
Angew. Chem., Int. Ed.
45
,
3022
3060
(
2006
).
23.
J. D.
Carbeck
,
J. C.
Severs
,
J.
Gao
,
Q.
Wu
,
R. D.
Smith
, and
G. M.
Whitesides
, “
Correlation between the charge of proteins in solution and in the gas phase investigated by protein charge ladders, capillary electrophoresis, and electrospray ionization mass spectrometry
,”
J. Phys. Chem. B
102
,
10596
10601
(
1998
).
24.
F.
Ruggeri
,
F.
Zosel
,
N.
Mutter
,
M.
Różycka
,
M.
Wojtas
,
A.
Ożyhar
,
B.
Schuler
, and
M.
Krishnan
, “
Single-molecule electrometry
,”
Nat. Nanotechnol.
12
,
488
495
(
2017
).
25.
M.
Krishnan
,
N.
Mojarad
,
P.
Kukura
, and
V.
Sandoghdar
, “
Geometry-induced electrostatic trapping of nanometric objects in a fluid
,”
Nature
467
,
692
695
(
2010
).
26.
N.
Mojarad
and
M.
Krishnan
, “
Measuring the size and charge of single nanoscale objects in solution using an electrostatic fluidic trap
,”
Nat. Nanotechnol.
7
,
448
452
(
2012
).
27.
H.
Kramers
, “
Brownian motion in a field of force and the diffusion model of chemical reactions
,”
Physica
7
,
284
304
(
1940
).
28.
M.
Krishnan
, “
Electrostatic free energy for a confined nanoscale object in a fluid
,”
J. Chem. Phys.
138
,
114906
(
2013
).
29.
M.
Krishnan
, “
A simple model for electrical charge in globular macromolecules and linear polyelectrolytes in solution
,”
J. Chem. Phys.
146
,
205101
(
2017
).
30.
K.
Gast
,
H.
Damaschun
,
K.
Eckert
,
K.
Schulzeforster
,
H. R.
Maurer
,
M.
Mullerfrohne
,
D.
Zirwer
,
J.
Czarnecki
, and
G.
Damaschun
, “
Prothymosin-alpha: A biologically-active protein with random coil conformation
,”
Biochemistry
34
,
13211
13218
(
1995
).
31.
S.
Müller-Späth
,
A.
Soranno
,
V.
Hirschfeld
,
H.
Hofmann
,
S.
Rüegger
,
L.
Reymond
,
D.
Nettels
, and
B.
Schuler
, “
Charge interactions can dominate the dimensions of intrinsically disordered proteins
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
14609
14614
(
2010
).
32.
M.
Davies
,
B.
Rühle
,
C.
Li
,
K.
Müllen
,
T.
Bein
, and
C.
Bräuchle
, “
Insights into nanoscale electrophoresis of single dye molecules in highly oriented mesoporous silica channels
,”
J. Phys. Chem. C
118
,
24013
24024
(
2014
).
33.
T.
Kiuchi
,
M.
Higuchi
,
A.
Takamura
,
M.
Maruoka
, and
N.
Watanabe
, “
Multitarget super-resolution microscopy with high-density labeling by exchangeable probes
,”
Nat. Methods
12
,
743
746
(
2015
).
34.
B. V.
Derjaguin
,
Theory of Stability of Colloids and Thin Films
(
Springer US
,
1991
).
35.
R.
Sjoback
,
J.
Nygren
, and
M.
Kubista
, “
Characterization of fluorescein-oligonucleotide conjugates and measurement of local electrostatic potential
,”
Biopolymers
46
,
445
453
(
1998
).
36.
K.
Friederich
and
P.
Woolley
, “
Electrostatic potential of macromolecules measured by pKa shift of a fluorophore. 1. The 3′ terminus of 16s RNA
,”
Eur. J. Biochem.
173
,
227
231
(
1988
).
37.
K.
Friederich
,
P.
Woolley
, and
K. G.
Steinhäuser
, “
Electrostatic potential of macromolecules measured by pKa shift of a fluorophore. 2. Transfer RNA
,”
Eur. J. Biochem.
173
,
233
239
(
1988
).

Supplementary Material

You do not currently have access to this content.