Experimental studies at finite Pressure-Temperature (P-T) conditions and a theoretical study at 0 K of the phase transition in lead sulphide (PbS) have been inconclusive. Many studies that have been done to understand structural transformation in PbS can broadly be classified into two main ideological streams—one with Pnma and another with Cmcm orthorhombic intermediate phase. To foster better understanding of this phenomenon, we present the result of the first-principles study of phase transition in PbS at finite temperature. We employed the particle swarm-intelligence optimization algorithm for the 0 K structure search and first-principles metadynamics simulations to study the phase transition pathway of PbS from the ambient pressure, 0 K Fm-3m structure to the high-pressure Pm-3m phase under experimentally achievable P-T conditions. Significantly, our calculation shows that both streams are achievable under specific P-T conditions. We further uncover new tetragonal and monoclinic structures of PbS with space group P21/c and I41/amd, respectively. We propose the P21/c and I41/amd as a precursor phase to the Pnma and Cmcm phases, respectively. We investigated the stability of the new structures and found them to be dynamically stable at their stability pressure range. Electronic structure calculations reveal that both P21/c and I41/amd phases are semiconducting with direct and indirect bandgap energies of 0.69(5) eV and 0.97(3) eV, respectively. In general, both P21/c and I41/amd phases were found to be energetically competitive with their respective orthorhombic successors.

1.
K.
Hummer
,
A.
Grüneis
, and
G.
Kresse
,
Phys. Rev. B
75
,
195211
(
2007
).
2.
J. N.
Zemel
,
J. D.
Jensen
, and
R. B.
Schoolar
,
Phys. Rev.
140
,
A330
(
1965
).
3.
R.
Dalven
,
Solid State Physics
(
Academic
,
New York
,
1973
), Vol. 18.
4.
S.-H.
Wei
and
A.
Zunger
,
Phys. Rev. B
55
,
13605
(
1997
).
5.
Y.
Li
,
C.
Lin
,
J.
Xu
,
G.
Li
,
X.
Li
, and
J.
Liu
,
AIP Adv.
4
,
127112
(
2014
).
6.
S.
Wang
,
J.
Zhang
,
Y.
Zhang
,
A.
Alvarado
,
J.
Attapattu
,
D.
He
, and
Y.
Zhao
,
Inorg. Chem.
52
,
8638
(
2013
).
7.
K.
Knorr
,
L.
Ehm
,
M.
Hytha
,
B.
Winkler
, and
W.
Depmeier
,
Eur. Phys. J. B
31
,
297
(
2003
).
8.
R. S.
Kane
,
R. E.
Cohen
, and
R.
Silbey
,
J. Phys. Chem.
100
,
7928
(
1996
).
9.
P. J.
Lin
and
L.
Kleinman
,
Phys. Rev.
142
,
478
(
1966
).
10.
R.
Ahuja
,
Phys. Status Solidi B
235
,
341
(
2003
).
11.
D.
Zagorac
,
K.
Doll
,
J. C.
Schön
, and
M.
Jansen
,
Phys. Rev. B
84
,
045206
(
2011
).
12.
Y.
Bencherif
,
A.
Boukra
,
A.
Zaoui
, and
M.
Ferhat
,
Mater. Chem. Phys.
126
,
707
(
2011
).
13.
S. V.
Ovsyannikov
,
V. V.
Shchennikov
,
S. V.
Popova
, and
A. Y.
Derevskov
,
Phys. Status Solidi B
235
,
521
(
2003
).
14.
I.
Wakabaya
,
H.
Kobayash
,
H.
Nagasaki
, and
S.
Minomura
,
J. Phys. Soc. Jpn.
25
,
227
(
1968
).
15.
T.
Chattopadhyay
,
H. G.
Schnering
,
W. A.
Grosshans
, and
W. B.
Holzapfel
,
Physica B+C
139-140
,
356
(
1986
).
16.
E. S.
Bozin
,
C. D.
Malliakas
,
P.
Souvatzis
,
T.
Proffen
,
N. A.
Spaldin
,
M. G.
Kanatzidis
, and
S. J. L.
Billinge
,
Science
330
,
1660
(
2010
).
17.
Y.
Zhang
,
X.
Ke
,
P. R. C.
Kent
,
J.
Yang
, and
C.
Chen
,
Phys. Rev. Lett.
107
,
175503
(
2011
).
18.
Y.
Yao
and
D. D.
Klug
,
Solid State Commun.
151
,
1873
(
2011
).
19.
A.
Majumdar
,
D. D.
Klug
, and
Y.
Yao
,
J. Chem. Phys.
144
,
124507
(
2016
).
20.
Y.
Yao
and
D. D.
Klug
,
Phys. Rev. B
88
,
014113
(
2013
).
21.
R.
Martoňák
,
D.
Donadio
,
A. R.
Oganov
, and
M.
Parrinello
,
Phys. Rev. B
76
,
014120
(
2007
).
22.
L. S.
Dubrovinsky
,
S. K.
Saxena
,
P.
Lazor
, and
R.
Ahuja
,
Nature
388
,
362
(
1997
).
23.
Y.
Tsuchida
and
T.
Yagi
,
Nature
347
,
267
(
1990
).
24.
F. M.
Bickelhaupt
and
E. J.
Baerends
,
Rev. Comput. Chem.
15
,
1
(
2007
).
25.
Y.
Wang
and
Y.
Ma
,
Comput. Phys. Commun.
183
,
2063
(
2012
);
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
,
Phys. Rev. B
82
,
094116
(
2010
).
26.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
27.
P. B.
Allen
and
R. C.
Dynes
,
J. Phys. C: Solid State Phys.
8
,
L158
(
1975
).
28.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
29.
S.
Baroni
,
S.
de Gironcoli
,
A.
Dal Corso
, and
P.
Giannozzi
,
Rev. Mod. Phys.
73
,
515
(
2001
).
30.
A.
Togo
,
F.
Oba
, and
I.
Tanaka
,
Phys. Rev. B
78
,
134106
(
2008
).
31.
R.
Martoňák
,
A.
Laio
, and
M.
Parrinello
,
Phys. Rev. Lett.
90
,
075503
(
2003
).
32.
R.
Martoňák
 et al,
Nat. Mater.
5
,
623
(
2006
).
33.
C. J.
Pickard
and
R. J.
Needs
,
Phys. Rev. Lett.
97
,
045504
(
2006
).
34.
B. A.
Shapiro
and
J.
Navetta
,
J. Supercomput.
8
,
195
(
1994
).
35.
J. C.
Toledano
and
P.
Toledano
,
The Landau Theory of Phase Transitions: Application to Structural, Incommensurate, Magnetic and Liquid Crystal Systems
(
World Scientific Publishing Company
,
1987
), Vol. 3.
36.
E. G.
Stewart
and
H. P.
Rooksky
,
Acta Crystallogr.
6
,
49
(
1953
).
You do not currently have access to this content.