Using dynamical density functional theory (DDFT), we theoretically study Brownian self-diffusion and structural relaxation of hard disks and compare to experimental results on quasi two-dimensional colloidal hard spheres. To this end, we calculate the self-van Hove correlation function and distinct van Hove correlation function by extending a recently proposed DDFT-approach for three-dimensional systems to two dimensions. We find that the theoretical results for both self-part and distinct part of the van Hove function are in very good quantitative agreement with the experiments up to relatively high fluid packing fractions of roughly 0.60. However, at even higher densities, deviations between the experiment and the theoretical approach become clearly visible. Upon increasing packing fraction, in experiments, the short-time self-diffusive behavior is strongly affected by hydrodynamic effects and leads to a significant decrease in the respective mean-squared displacement. By contrast, and in accordance with previous simulation studies, the present DDFT, which neglects hydrodynamic effects, shows no dependence on the particle density for this quantity.

1.
E. R.
Weeks
and
D. A.
Weitz
,
Phys. Rev. Lett.
89
,
095704
(
2002
).
2.
W. K.
Kegel
and
A.
van Blaaderen
,
Science
287
,
290
(
2000
).
3.
N. B.
Simeonova
,
R. P. A.
Dullens
,
D. G. A. L.
Aarts
,
V. W. A.
de Villeneuve
,
H. N. W.
Lekkerkerker
, and
W. K.
Kegel
,
Phys. Rev. E
73
,
041401
(
2006
).
4.
Y.
Gao
and
M. L.
Kilfoil
,
Phys. Rev. Lett.
99
,
078301
(
2007
).
5.
T. O. E.
Skinner
,
D. G. A. L.
Aarts
, and
R. P. A.
Dullens
,
Phys. Rev. Lett.
105
,
168301
(
2010
).
6.
T. O. E.
Skinner
,
S. K.
Schnyder
,
D. G. A. L.
Aarts
,
J.
Horbach
, and
R. P. A.
Dullens
,
Phys. Rev. Lett.
111
,
128301
(
2013
).
7.
A. L.
Thorneywork
,
R. E.
Rozas
,
R. P. A.
Dullens
, and
J.
Horbach
,
Phys. Rev. Lett.
115
,
268301
(
2015
).
8.
A. L.
Thorneywork
,
J. L.
Abbott
,
D. G. A. L.
Aarts
, and
R. P. A.
Dullens
,
Phys. Rev. Lett.
118
,
158001
(
2017
).
9.
10.
J.-P.
Hansen
and
I.
McDonald
,
Theory of Simple Liquids
, 4th ed. (
Academic Press
,
London
,
2013
).
11.
A. M.
Puertas
,
M.
Fuchs
, and
M. E.
Cates
,
J. Chem. Phys.
121
,
2813
(
2004
).
12.
P.
Hopkins
,
A.
Fortini
,
A. J.
Archer
, and
M.
Schmidt
,
J. Chem. Phys.
133
,
224505
(
2010
).
13.
F.
Weysser
,
A. M.
Puertas
,
M.
Fuchs
, and
T.
Voigtmann
,
Phys. Rev. E
82
,
011504
(
2010
).
14.
D.
Stopper
,
K.
Marolt
,
R.
Roth
, and
H.
Hansen-Goos
,
Phys. Rev. E
92
,
022151
(
2015
).
15.
T.
Schindler
and
M.
Schmidt
,
J. Chem. Phys.
145
,
064506
(
2016
).
16.
D.
Stopper
,
R.
Roth
, and
H.
Hansen-Goos
,
J. Phys.: Condens. Matter
28
,
455101
(
2016
).
17.
A. J.
Archer
,
P.
Hopkins
, and
M.
Schmidt
,
Phys. Rev. E
75
,
040501
(
2007
).
18.
M.
Bier
,
R.
van Roij
,
M.
Dijkstra
, and
P.
van der Schoot
,
Phys. Rev. Lett.
101
,
215901
(
2008
).
20.
U.
Marconi
and
P.
Tarazona
,
J. Chem. Phys.
110
,
8032
(
1999
).
21.
A. J.
Archer
and
R.
Evans
,
J. Chem. Phys.
121
,
4246
(
2004
).
22.
23.
R.
Roth
,
J. Phys.: Condens. Matter
22
,
063102
(
2010
).
24.
D.
Stopper
,
R.
Roth
, and
H.
Hansen-Goos
,
J. Chem. Phys.
143
,
181105
(
2015
).
25.
A. L.
Thorneywork
,
D. G. A. L.
Aarts
,
J.
Horbach
, and
R. P. A.
Dullens
,
Soft Matter
12
,
4129
(
2016
).
26.
A. L.
Thorneywork
,
D. G. A. L.
Aarts
,
J.
Horbach
, and
R. P. A.
Dullens
,
Phys. Rev. E
95
,
012614
(
2017
).
27.
S.
Vivek
,
C. P.
Kelleher
,
P. M.
Chaikin
, and
E. R.
Weeks
,
Proc. Natl. Acad. Sci. U. S. A.
114
,
1850
(
2017
).
28.
B.
Illing
,
S.
Fritschi
,
H.
Kaiser
,
C.
Klix
,
G.
Maret
, and
P.
Keim
,
Proc. Natl. Acad. Sci. U. S. A.
114
,
1856
(
2017
).
29.
R.
Roth
,
K.
Mecke
, and
M.
Oettel
,
J. Chem. Phys.
136
,
081101
(
2012
).
30.
A. L.
Thorneywork
,
R.
Roth
,
D. G. A. L.
Aarts
, and
R. P. A.
Dullens
,
J. Chem. Phys.
140
,
161106
(
2014
).
31.
R.
García-Rojo
,
S.
Luding
, and
J. J.
Brey
,
Phys. Rev. E
74
,
061305
(
2006
).
32.
W.-S.
Xu
,
Z.-Y.
Sun
, and
L.-J.
An
,
J. Chem. Phys.
137
,
104509
(
2012
).
33.
E.
Flenner
and
G.
Szamel
,
Nat. Commun.
6
,
7392
(
2015
).
34.
J. K.
Percus
,
Phys. Rev. Lett.
8
,
462
(
1962
).
35.
J. K.
Percus
,
J. Stat. Phys.
15
,
505
(
1976
).
36.
T. K.
Vanderlick
,
H. T.
Davis
, and
J. K.
Percus
,
J. Chem. Phys.
91
,
7136
(
1989
).
37.
A. J.
Archer
,
J. Phys.: Condens. Matter
17
,
1405
(
2005
).
38.
C. P.
Royall
,
J.
Dzubiella
,
M.
Schmidt
, and
A.
van Blaaderen
,
Phys. Rev. Lett.
98
,
188304
(
2007
).
39.
M.
Rauscher
,
A.
Dominguez
,
M.
Krüger
, and
F.
Penna
,
J. Chem. Phys.
127
,
244906
(
2007
).
40.
B. D.
Goddard
,
A.
Nold
, and
S.
Kalliadasis
,
J. Chem. Phys.
145
,
214106
(
2016
).
41.
J.
Reinhardt
and
J. M.
Brader
,
Phys. Rev. E
85
,
011404
(
2012
).
42.
D.
de las Heras
and
M.
Schmidt
,
Phys. Rev. Lett.
113
,
238304
(
2014
).
43.
T. V.
Ramakrishnan
and
M.
Yussouff
,
Phys. Rev. B
19
,
2775
(
1979
).
44.
J. A.
Leegwater
and
G.
Szamel
,
Phys. Rev. A
46
,
4999
(
1992
).
45.
E.
Helfand
,
H. L.
Frisch
, and
J. L.
Lebowitz
,
J. Chem. Phys.
34
,
1037
(
1961
).
46.
J.
Crocker
and
D.
Grier
,
J. Colloid Interface Sci.
179
,
298
(
1996
).
47.
D.
Stopper
and
R.
Roth
,
J. Chem. Phys.
147
,
064508
(
2017
).
48.
J.
Bleibel
,
A.
Dominguez
, and
M.
Oettel
,
J. Phys.: Condens. Matter
27
,
194113
(
2015
).
49.
J.
Blake
,
Proceedings of the Cambridge Philosophical Society
(
Cambridge University Press
,
1971
), Vol. 70, p.
303
.
50.
M.
Schmidt
and
J. M.
Brader
,
J. Chem. Phys.
138
,
214101
(
2013
).
51.
J. M.
Brader
and
M.
Schmidt
,
J. Phys.: Condens. Matter
27
,
194106
(
2015
).
52.
D.
de las Heras
and
M.
Schmidt
,
Phys. Rev. Lett.
120
,
028001
(
2018
).
53.
M.
Rex
and
H.
Löwen
,
Eur. Phys. J. E
28
,
139
(
2009
).
You do not currently have access to this content.