We present an efficient algorithm for one- and two-component analytical energy gradients with respect to nuclear displacements in the exact two-component decoupling approach to the one-electron Dirac equation (X2C). Our approach is a generalization of the spin-free ansatz by Cheng and Gauss [J. Chem. Phys. 135, 084114 (2011)], where the perturbed one-electron Hamiltonian is calculated by solving a first-order response equation. Computational costs are drastically reduced by applying the diagonal local approximation to the unitary decoupling transformation (DLU) [D. Peng and M. Reiher, J. Chem. Phys. 136, 244108 (2012)] to the X2C Hamiltonian. The introduced error is found to be almost negligible as the mean absolute error of the optimized structures amounts to only 0.01 pm. Our implementation in TURBOMOLE is also available within the finite nucleus model based on a Gaussian charge distribution. For a X2C/DLU gradient calculation, computational effort scales cubically with the molecular size, while storage increases quadratically. The efficiency is demonstrated in calculations of large silver clusters and organometallic iridium complexes.

2.
K. G.
Dyall
and
K.
Fægri
, Jr.
,
Introduction to Relativistic Quantum Chemistry
(
Oxford University Press
,
New York
,
2007
).
3.
M.
Reiher
and
A.
Wolf
,
Relativistic Quantum Chemistry: The Fundamental Theory of Molecular Science
, 2nd ed. (
Wiley-VCH
,
Weinheim
,
2015
).
4.
Handbook of Relativistic Quantum Chemistry
, edited by
W.
Liu
(
Springer
,
Berlin, Heidelberg
,
2017
).
5.
Computational Methods in Lanthanide and Actinide Chemistry
, edited by
M.
Dolg
(
John Wiley & Sons
,
Chichester
,
2015
).
6.
7.
P.
Pyykkö
,
Chem. Soc. Rev.
37
,
1967
(
2008
).
9.
10.
J.
Autschbach
,
J. Chem. Phys.
136
,
150902
(
2012
).
11.
M. K.
Armbruster
,
W.
Klopper
, and
F.
Weigend
,
Phys. Chem. Chem. Phys.
8
,
4862
(
2006
).
12.
M. K.
Armbruster
,
F.
Weigend
,
C.
van Wüllen
, and
W.
Klopper
,
Phys. Chem. Chem. Phys.
10
,
1748
(
2008
).
13.
F.
Weigend
and
A.
Baldes
,
J. Chem. Phys.
133
,
174102
(
2010
).
14.
M.
Dolg
and
X.
Cao
,
Chem. Rev.
112
,
403
(
2012
).
15.
M.
Reiher
,
Theor. Chem. Acc.
116
,
241
(
2006
).
17.
D.
Peng
and
M.
Reiher
,
Theor. Chem. Acc.
131
,
1081
(
2012
).
18.
M.
Reiher
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
139
(
2012
).
20.
W.
Liu
,
Natl. Sci. Rev.
3
,
204
(
2016
).
21.
T.
Saue
and
T.
Helgaker
,
J. Comput. Chem.
23
,
814
(
2002
).
22.
O.
Fossgaard
,
O.
Gropen
,
M. C.
Valero
, and
T.
Saue
,
J. Chem. Phys.
118
,
10418
(
2003
).
23.
M.
Douglas
and
N. M.
Kroll
,
Ann. Phys.
82
,
89
(
1974
).
24.
25.
G.
Jansen
and
B. A.
Hess
,
Phys. Rev. A
39
,
6016
(
1989
).
26.
T.
Nakajima
and
K.
Hirao
,
Chem. Phys. Lett.
329
,
511
(
2000
).
27.
T.
Nakajima
and
K.
Hirao
,
J. Chem. Phys.
113
,
7786
(
2000
).
28.
A.
Wolf
,
M.
Reiher
, and
B. A.
Hess
,
J. Chem. Phys.
117
,
9215
(
2002
).
29.
C.
van Wüllen
,
J. Chem. Phys.
120
,
7307
(
2004
).
30.
M.
Reiher
and
A.
Wolf
,
J. Chem. Phys.
121
,
2037
(
2004
).
31.
M.
Reiher
and
A.
Wolf
,
J. Chem. Phys.
121
,
10945
(
2004
).
32.
A.
Wolf
and
M.
Reiher
,
J. Chem. Phys.
124
,
064102
(
2006
).
33.
A.
Wolf
and
M.
Reiher
,
J. Chem. Phys.
124
,
064103
(
2006
).
34.
M.
Reiher
and
A.
Wolf
,
Phys. Lett. A
360
,
603
(
2007
).
35.
D.
Peng
and
K.
Hirao
,
J. Chem. Phys.
130
,
044102
(
2009
).
36.
C.
Chang
,
M.
Pelissier
, and
P.
Durand
,
Phys. Scr.
34
,
394
(
1986
).
37.
E.
van Lenthe
,
E. J.
Baerends
, and
J. G.
Snijders
,
J. Phys. Chem.
99
,
4597
(
1993
).
38.
E.
van Lenthe
,
E. J.
Baerends
, and
J. G.
Snijders
,
J. Chem. Phys.
101
,
9783
(
1994
).
39.
S.
Faas
,
J.
Snijders
,
J.
van Lenthe
,
E.
van Lenthe
, and
E.
Baerends
,
Chem. Phys. Lett.
246
,
632
(
1995
).
40.
H. J. A.
Jensen
, in
Lecture at the REHE 2005 Conference
,
Mülhleim, Germany
,
April 2005
.
41.
W.
Kutzelnigg
and
W.
Liu
,
J. Chem. Phys.
123
,
241102
(
2005
).
42.
W.
Kutzelnigg
and
W.
Liu
,
Mol. Phys.
104
,
2225
(
2006
).
43.
W.
Liu
and
D.
Peng
,
J. Chem. Phys.
125
,
044102
(
2006
).
44.
M.
Iliaš
and
T.
Saue
,
J. Chem. Phys.
126
,
064102
(
2007
).
45.
W.
Liu
and
W.
Kutzelnigg
,
J. Chem. Phys.
126
,
114107
(
2007
).
46.
D.
Peng
,
W.
Liu
,
Y.
Xiao
, and
L.
Cheng
,
J. Chem. Phys.
127
,
104106
(
2007
).
47.
W.
Liu
and
D.
Peng
,
J. Chem. Phys.
131
,
031104
(
2009
).
48.
J.
Sikkema
,
L.
Visscher
,
T.
Saue
, and
M.
Iliaš
,
J. Chem. Phys.
131
,
124116
(
2009
).
49.
K. G.
Dyall
,
J. Chem. Phys.
106
,
9618
(
1997
).
50.
K. G.
Dyall
,
J. Chem. Phys.
109
,
4201
(
1998
).
51.
K. G.
Dyall
and
T.
Enevoldsen
,
J. Chem. Phys.
111
,
10000
(
1999
).
52.
K. G.
Dyall
,
J. Chem. Phys.
115
,
9136
(
2001
).
53.
D.
Cremer
,
W.
Zou
, and
M.
Filatov
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
436
(
2014
).
54.
D.
Peng
and
M.
Reiher
,
J. Chem. Phys.
136
,
244108
(
2012
).
55.
D.
Peng
,
N.
Middendorf
,
F.
Weigend
, and
M.
Reiher
,
J. Chem. Phys.
138
,
184105
(
2013
).
56.
L.
Cheng
and
J.
Gauss
,
J. Chem. Phys.
135
,
084114
(
2011
).
57.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
,
H.
Horn
, and
C.
Kölmel
,
Chem. Phys. Lett.
162
,
165
(
1989
).
58.
F.
Furche
,
R.
Ahlrichs
,
C.
Hättig
,
W.
Klopper
,
M.
Sierka
, and
F.
Weigend
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
91
(
2014
).
59.
Local version of TURBOMOLE V7.2 2017, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.
60.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
61.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
62.
O.
Vahtras
,
J.
Almlöf
, and
M. W.
Feyereisen
,
Chem. Phys. Lett.
213
,
514
(
1993
).
63.
K.
Eichkorn
,
O.
Treutler
,
H.
Öhm
,
M.
Häser
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
242
,
652
(
1995
).
64.
K.
Eichkorn
,
F.
Weigend
,
O.
Treutler
, and
R.
Ahlrichs
,
Theor. Chem. Acc.
97
,
119
(
1997
).
65.
F.
Weigend
,
Phys. Chem. Chem. Phys.
8
,
1057
(
2006
).
66.
F.
Weigend
,
M.
Kattannek
, and
R.
Ahlrichs
,
J. Chem. Phys.
130
,
164106
(
2009
).
67.
W.
Kutzelnigg
,
Int. J. Quantum Chem.
25
,
107
(
1984
).
68.
69.
K. G.
Dyall
,
J. Chem. Phys.
100
,
2118
(
1994
).
70.
K. G.
Dyall
,
I. P.
Grant
, and
S.
Wilson
,
J. Phys. B: At. Mol. Phys.
17
,
493
(
1984
).
71.
R. E.
Stanton
and
S.
Havriliak
,
J. Chem. Phys.
81
,
1910
(
1984
).
72.
L. L.
Foldy
and
S. A.
Wouthuysen
,
Phys. Rev.
78
,
29
(
1950
).
73.
W.
Kutzelnigg
,
J. Chem. Phys.
110
,
8283
(
1999
).
74.
J.-L.
Heully
,
I.
Lindgren
,
E.
Lindroth
,
S.
Lundqvist
, and
A.-M.
Mårtensson-Pendrill
,
J. Phys. B: At. Mol. Phys.
19
,
2799
(
1986
).
75.
M.
Barysz
,
A. J.
Sadlej
, and
J. G.
Snijders
,
Int. J. Quantum Chem.
65
,
225
(
1997
).
76.
M.
Barysz
and
A. J.
Sadlej
,
J. Mol. Struct.: THEOCHEM
573
,
181
(
2001
).
77.
M.
Barysz
and
A. J.
Sadlej
,
J. Chem. Phys.
116
,
2696
(
2002
).
78.
D.
Kedziera
and
M.
Barysz
,
Chem. Phys. Lett.
446
,
176
(
2007
).
79.
A. V.
Matveev
and
N.
Rösch
,
J. Chem. Phys.
128
,
244102
(
2008
).
80.
J.
Thar
and
B.
Kirchner
,
J. Chem. Phys.
130
,
124103
(
2009
).
81.
L.
Gagliardi
,
N. C.
Handy
,
A. G.
Ioannou
,
C.-K.
Skylaris
,
S.
Spencer
,
A.
Willetts
, and
A. M.
Simper
,
Chem. Phys. Lett.
283
,
187
(
1998
).
82.
J.
Seino
and
H.
Nakai
,
J. Chem. Phys.
136
,
244102
(
2012
).
83.
J.
Seino
and
H.
Nakai
,
J. Chem. Phys.
137
,
144101
(
2012
).
84.
P. K.
Tamukong
,
M. R.
Hoffmann
,
Z.
Li
, and
W.
Liu
,
J. Phys. Chem. A
118
,
1489
(
2014
).
86.
J. A.
Pople
,
R.
Krishnan
,
H. B.
Schlegel
, and
J. S.
Binkley
,
Int. J. Quantum Chem.
16
,
225
(
1979
).
87.
J.
Rice
and
R.
Amos
,
Chem. Phys. Lett.
122
,
585
(
1985
).
88.
J. A.
Pople
,
P. M.
Gill
, and
B. G.
Johnson
,
Chem. Phys. Lett.
199
,
557
(
1992
).
89.
J.
Baker
,
J.
Andzelm
,
A.
Scheiner
, and
B.
Delley
,
J. Chem. Phys.
101
,
8894
(
1994
).
90.
W.
Zou
,
M.
Filatov
, and
D.
Cremer
,
J. Chem. Theory Comput.
8
,
2617
(
2012
).
91.
Q.
Sun
,
W.
Liu
,
Y.
Xiao
, and
L.
Cheng
,
J. Chem. Phys.
131
,
081101
(
2009
).
92.
Q.
Sun
,
Y.
Xiao
, and
W.
Liu
,
J. Chem. Phys.
137
,
174105
(
2012
).
93.
L.
Cheng
and
J.
Gauss
,
J. Chem. Phys.
141
,
164107
(
2014
).
94.
L.
Visscher
and
K.
Dyall
,
At. Data Nucl. Data Tables
67
,
207
(
1997
).
95.
H.
King
and
M.
Dupuis
,
J. Comput. Phys.
21
,
144
(
1976
).
96.
M.
Dupuis
,
J.
Rys
, and
H. F.
King
,
J. Chem. Phys.
65
,
111
(
1976
).
97.
J.
Rys
,
M.
Dupuis
, and
H. F.
King
,
J. Comput. Chem.
4
,
154
(
1983
).
98.
M.
Dupuis
and
A.
Marquez
,
J. Chem. Phys.
114
,
2067
(
2001
).
99.
N.
Flocke
and
V.
Lotrich
,
J. Comput. Chem.
29
,
2722
(
2008
).
100.
E.
Anderson
,
Z.
Bai
,
C.
Bischof
,
S.
Blackford
,
J.
Demmel
,
J.
Dongarra
,
J.
Du Croz
,
A.
Greenbaum
,
S.
Hammarling
,
A.
McKenney
, and
D.
Sorensen
,
LAPACK Users’ Guide
, 3rd ed. (
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
,
1999
).
101.
A.
Schäfer
,
A.
Klamt
,
D.
Sattel
,
J. C. W.
Lohrenz
, and
F.
Eckert
,
Phys. Chem. Chem. Phys.
2
,
2187
(
2000
).
102.
A.
Baldes
and
F.
Weigend
,
Mol. Phys.
111
,
2617
(
2013
).
103.
J. C.
Boettger
,
Phys. Rev. B
62
,
7809
(
2000
).
104.
S.
Majumder
,
A. V.
Matveev
, and
N.
Rösch
,
Chem. Phys. Lett.
382
,
186
(
2003
).
105.
J. E.
Peralta
and
G. E.
Scuseria
,
J. Chem. Phys.
120
,
5875
(
2004
).
106.
C.
van Wüllen
and
C.
Michauk
,
J. Chem. Phys.
123
,
204113
(
2005
).
107.
M.
Filatov
,
W.
Zou
, and
D.
Cremer
,
J. Chem. Phys.
139
,
014106
(
2013
).
108.
W.
Zou
,
M.
Filatov
, and
D.
Cremer
,
J. Chem. Phys.
142
,
214106
(
2015
).
109.
M.
Kühn
and
F.
Weigend
,
J. Chem. Phys.
141
,
224302
(
2014
).
110.
F.
Weigend
,
M.
Häser
,
H.
Patzelt
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
294
,
143
(
1998
).
111.
P.
Pollak
and
F.
Weigend
,
J. Chem. Theory Comput.
13
,
3696
(
2017
).
112.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
113.
O.
Treutler
and
R.
Ahlrichs
,
J. Chem. Phys.
102
,
346
(
1995
).
114.
L.
Visscher
and
K. G.
Dyall
,
J. Chem. Phys.
104
,
9040
(
1996
).
115.
L.
Visscher
,
J.
Styszyñski
, and
W. C.
Nieuwpoort
,
J. Chem. Phys.
105
,
1987
(
1996
).
116.
K. G.
Dyall
,
P. R.
Taylor
,
K.
Faegri
, Jr.
, and
H.
Partridge
,
J. Chem. Phys.
95
,
2583
(
1991
).
117.
O.
Visser
,
L.
Visscher
,
P. J. C.
Aerts
, and
W. C.
Nieuwpoort
,
Theor. Chim. Acta
81
,
405
(
1992
).
118.
A. P.
Sutton
and
J.
Chen
,
Philos. Mag. Lett.
61
,
139
(
1990
).
119.
J. P. K.
Doye
and
D. J.
Wales
,
New J. Chem.
22
,
733
(
1998
).
120.
I.-K.
Suh
,
H.
Ohta
, and
Y.
Waseda
,
J. Mater. Sci.
23
,
757
(
1988
).
121.
P.
Nava
,
M.
Sierka
, and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
5
,
3372
(
2003
).
122.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
123.
D.
Andrae
,
U.
Häußermann
,
M.
Dolg
,
H.
Stoll
, and
H.
Preuß
,
Theor. Chim. Acta
77
,
123
(
1990
).
124.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
125.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
126.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
(
1994
).
127.
D.
Figgen
,
K. A.
Peterson
,
M.
Dolg
, and
H.
Stoll
,
J. Chem. Phys.
130
,
164108
(
2009
).
128.
R. J. F.
Berger
,
H.-G.
Stammler
,
B.
Neumann
, and
N. W.
Mitzel
,
Eur. J. Inorg. Chem.
2010
,
1613
.

Supplementary Material

You do not currently have access to this content.